UOJ #79 一般图最大匹配 带花树
一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样。
具体操作是一个一个点做类似匈牙利的找增广路操作,每次将一个点作为根(染成白色),然后向下bfs黑白染色,两个白点相邻时将这两个白点缩到割顶成一个点(用并查集维护一下)(匈牙利算法也是只用白点找增广,黑点相当于重复计算了没有意义),然后把奇环里所有黑点视为白点放到队列里bfs。
设置一个pre数组记录返回的路径(因为bfs的方向和匈牙利是相反的所以最后找到的时候再顺着返回的路径重新匹配),因为重新匹配的时候找的是可匹配的黑点,所以在dfs的时候只用给每个黑点设置pre,产生奇环的时候再对白点设置pre,因为此时奇环里的点匹配之后才能决定颜色(黑白都可以)。
这个算法,有一丶丶恶心。
原理详解:https://blog.csdn.net/u014261987/article/details/41249385
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
#define LL long long
const int maxn=;
const int mmm=;
int n,m;
struct nod{
int y,next;
}e[maxn];
int head[mmm]={},q[maxn]={},tl=,tr=,tot=;
int fa[mmm]={},tp[mmm]={},pre[mmm]={},d[mmm]={},bel[mmm]={},tly=;
void init(int x,int y){e[++tot].y=y;e[tot].next=head[x];head[x]=tot;}
inline int getfa(int x){
return fa[x]==x?x:fa[x]=getfa(fa[x]);
}
inline int lca(int x,int y){
++tly;
for(;;){
if(x){
x=getfa(x);
if(bel[x]==tly)return x;
else {bel[x]=tly;x=pre[d[x]];}
}
swap(x,y);
}
}
inline void mlink(int x,int y,int pa){
while(getfa(x)!=pa){
pre[x]=y;y=d[x];
if(tp[y]==){tp[y]=;q[++tr]=y;}
if(getfa(x)==x)fa[x]=pa;
if(getfa(y)==y)fa[y]=pa;
x=pre[y];
}
}
int doit(int s){
for(int i=;i<=n;++i)fa[i]=i;
memset(tp,,sizeof(tp));memset(pre,,sizeof(pre));
tl=tr=;q[]=s;tp[s]=;
while(tl<=tr){
int x=q[tl];++tl;
for(int i=head[x];i;i=e[i].next){
int y=e[i].y;
if(getfa(x)==getfa(y)||tp[y]==)continue;
if(!tp[y]){
tp[y]=;pre[y]=x;
if(!d[y]){
for(int now=y,las,j;now;now=las){
j=pre[now]; las=d[pre[now]];
d[now]=j;d[j]=now;
}
return ;
}
tp[d[y]]=;q[++tr]=d[y];
}
else{
int pa=lca(x,y);
mlink(x,y,pa);mlink(y,x,pa);
}
}
}return ;
}
int main(){
scanf("%d%d",&n,&m);
int x,y;
for(int i=;i<m;++i){scanf("%d%d",&x,&y);init(x,y);init(y,x);}
int ans=;
for(int i=;i<n;++i){if(!d[i])ans+=doit(i);}
printf("%d\n",ans);
for(int i=;i<=n;++i)if(d[i])d[d[i]]=i;
for(int i=;i<=n;++i){
printf("%d ",d[i]);
}printf("\n");
return ;
}
UOJ #79 一般图最大匹配 带花树的更多相关文章
- HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...
- ZOJ 3316 Game 一般图最大匹配带花树
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...
- 【UOJ #79】一般图最大匹配 带花树模板
http://uoj.ac/problem/79 带花树模板,做法详见cyb的论文或fhq的博客. 带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next( ...
- 【UOJ 79】 一般图最大匹配 (✿带花树开花)
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...
- uoj#79. 一般图最大匹配(带花树)
传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那 ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- 【刷题】UOJ #79 一般图最大匹配
从前一个和谐的班级,所有人都是搞OI的.有 \(n\) 个是男生,有 \(0\) 个是女生.男生编号分别为 \(1,-,n\) . 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个 ...
- UOJ #79. 一般图最大匹配
板子: #include<iostream> #include<cstdio> #include<algorithm> #include<vector> ...
- kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...
随机推荐
- Flex布局和Bootstrap布局两者的比较
在Bootstrap中采用12栅格的布局,12份随意分配,但是不能解决5等分,7等分的问题.所以flex布局来协助. bootstrap的布局方式 <div class="row&qu ...
- php 日期格式转换万能公式
思路用strtotime转换时间的字符串 $t='2017-03-09 02:30'; echo(date('Y-m-d H-i', strtotime($t)));
- unbuntu中如何像Windows一样顺畅的切换中英文输入法
1.首先在unbuntu安装搜狗拼音输入法(这个不用教了) 2.点击右上角的搜狗拼音的图标点击设置进入设置页面 3.选择高级 4.选择Fcitx设置 5.添加输入法英语(美国) 6.在设置中选择按键, ...
- sqlyog通过跳板机ssh连接mysql数据库
方法一: 方法二: 在跳板机上启动sh脚本做ssh端口转发,客户端配置连接 10.0.0.1的8306端口即可 jdbc:mysql://10.0.0.1:8306/testdb?useUnicode ...
- mysql报错问题解决MySQL server PID file could not be found!
MySQL server PID file could not be found! 无法启动mysql服务 # service mysqld start MySQL server PID file c ...
- 50个常用的sql语句
50个常用的sql语句 Student(S#,Sname,Sage,Ssex) 学生表 Course(C#,Cname,T#) 课程表 SC(S#,C#,score) 成绩表 Teacher(T#,T ...
- [转] MachingLearning中的距离相似性计算以及python实现
参考:https://blog.csdn.net/gamer_gyt/article/details/75165842#t16 https://blog.csdn.net/ymlgrss/artic ...
- Maven实战(Maven+Nexus建立私服【Linux系统】)
准备工作 下载及配置Maven3:http://www.cnblogs.com/leefreeman/archive/2013/03/05/2944519.html 下载Nexus:http://ne ...
- CCF2014032窗口(C语言)
问题描述 在某图形操作系统中,有 N 个窗口,每个窗口都是一个两边与坐标轴分别平行的矩形区域.窗口的边界上的点也属于该窗口.窗口之间有层次的区别,在多于一个窗口重叠的区域里,只会显示位于顶层的窗口里的 ...
- 【gearman】学习笔记
学习资料:http://gearman.org/manual/ 1.Gearman是跨语言的,client和worker可以用不同的语言来实现 2.client与job server之间的交互称为ta ...