闭区间套定理(Nested intervals theorem)讲解2




①确界与极限,看完这篇你才能明白 http://www.cnblogs.com/iMath/p/6265001.html
②这个批注由这个问题而来


表示$c$可能在$\bigcap_{n=1}^{\infty} (a_{n},b_{n})$或$\bigcap_{n=1}^{\infty} (a_{n},b_{n}]$或$\bigcap_{n=1}^{\infty} [a_{n},b_{n})$或$\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$内,$\bigcap_{n=1}^{\infty} (a_{n},b_{n})$、$\bigcap_{n=1}^{\infty} (a_{n},b_{n}]$、$\bigcap_{n=1}^{\infty} [a_{n},b_{n})$都是 $\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$的真子集,$c$可以不在$\bigcap_{n=1}^{\infty} (a_{n},b_{n})$或$\bigcap_{n=1}^{\infty} (a_{n},b_{n}]$或$\bigcap_{n=1}^{\infty} [a_{n},b_{n})$内,但是$c$不可能不在$\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$中,否则就与

矛盾了。所以在这里只有$\bigcap_{n=1}^{\infty} [a_{n},b_{n}]$才一定包含$c$,其它三种区间的交集形式仅仅只是可能包含$c$,这也启示我们并不只是只有闭区间套可以包含$c$,其它三种区间的交集也可以包含$c$。
③这里用到了极限与不等关系


闭区间套定理(Nested intervals theorem)讲解2的更多相关文章
- 闭区间套定理(Nested intervals theorem)讲解1
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在 内,那么同样也不 ...
- 闭区间套定理(Nested intervals theorem)
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在内,那么同样也不会 ...
- 华东师范大学p163页,用闭区间套定理证明数列的可惜收敛准则,被网友解决了。
- 主定理(Master Theorem)与时间复杂度
1. 问题 Karatsuba 大整数的快速乘积算法的运行时间(时间复杂度的递推关系式)为 T(n)=O(n)+4⋅T(n/2),求其最终的时间复杂度. 2. 主定理的内容 3. 分析 所以根据主定理 ...
- [笔记] 兰道定理 Landau's Theorem
兰道定理的内容: 一个竞赛图强连通的充要条件是:把它的所有顶点按照入度d从小到大排序,对于任意\(k\in [0,n-1]\)都不满足\(\sum_{i=0}^k d_i=\binom{k+1}{2} ...
- 斯托克斯定理(Stokes' theorem)
1. 几种形式 ∮∂SPdx+Qdy+Rdz=∬S∣∣∣∣∣∣cosα∂∂xPcosβ∂∂yQcosγ∂∂zR∣∣∣∣∣∣dS ∮∂Ωw=∬Ωdw 左边是内积: 右边是外积: 物理上的应用: ∮∂SE ...
- 无限二等分[0,1]这个区间之后还剩下啥?what's left after dividing an unit interval [0,1] infinitely many times?
Dividing an unit interval \([0,1]\) into two equal subintervals by the midpoint \(\dfrac {0+1} {2}=\ ...
- 从一个点的长度是多少说起(Talking started from the length of a point on the real number line)
From the perspective of analytical geometry, an interval is composed of infinitely many points, whil ...
- 深入理解无穷级数和的定义(the sum of the series)
Given an infinite sequence (a1, a2, a3, ...), a series is informally the form of adding all those te ...
随机推荐
- Django Web开发学习笔记(5)
第五部分 Model 层 创建一个app工程.app和project的区别引用DjangoBook的说法是: 一个project包含很多个Django app以及对它们的配置. 技术上,project ...
- Gitbook 命令行工具
1.Gitbook 简介 1.1 Gitbook GitBook 是一个基于 Node.js 开发的命令行工具,使用它可以很方便的管理电子书,GitBook 是目前最流行的开源书籍写作方案. 使用 G ...
- 如何在servlet刚启动时候获取服务器根目录?
public class InitServlet extends HttpServlet{ public static String root; @Override public void init( ...
- flutter 环境安装以及配置
首先需要下载flutter源码,以下是github地址: https://github.com/flutter/flutter 然后需要安装git环境吧,下图红框可以自行下载安装 接下来需要安装flu ...
- ASP.NET CORE的H5上传
做的CORE项目中用到H5上传,把以前的MVC代码复制过来得修改一下才能用在.NET CORE中
- 每日英语:Don't Call Us Bossy
[Confident girls are often called the other B-word, and it can keep them from reaching their full po ...
- MyBean通用报表插件介绍
特性: 1.基于MyBean插件平台.可以在任何插件中无缝调用显示. 2.其他窗体中无需引用报表控件.就可以拥有报表的设计预览打印等功能. 3.甚至可以不用带包,制作报表插件,也就是说你可以将RM的报 ...
- Zookeeper之Zookeeper底层客户端架构实现原理(转载)
Zookeeper的Client直接与用户打交道,是我们使用Zookeeper的interface.了解ZK Client的结构和工作原理有利于我们合理的使用ZK,并能在使用中更早的发现问题.本文将在 ...
- python 数据结构之顺序列表的实现
算法简要: 追加直接往列表后面添加元素,插入是将插入位置后的元素全部往后面移动一个位置,然后再将这个元素放到指定的位置,将长度加1删除是将该位置后面的元素往前移动, 覆盖该元素,然后再将长度减1 #! ...
- Centos 6.4 安装erlang&rabbitmq
1. 安装 erlang 1.1 准备工作,先安装依赖库 yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-d ...