hdu5608杜教筛
题意:给定函数\(f(x)\),有\(n^2-3*n+2=\sum_{d|n}f(d)\),求\(\sum_{i=1}^nf(i)\)
题解:很显然的杜教筛,假设\(g(n)=n^2-3*n+2\),那么有\(g=f*I\),由莫比乌斯反演,\(f=g*\mu\),可以O(nlogn)预处理到1e6,剩余部分杜教筛
我们先观察杜教筛的推导过程,假设要求\(s(n)=\sum_{i=1}^nf(i)\),
\(\sum_{i=1}^ng*f=\sum_{i=1}^n\sum_{d|i}g(d)f(\frac{i}{d})=\sum_{d=1}^ng(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}f(i)=\sum_{d=1}^ng(d)S(\lfloor \frac{n}{d} \rfloor)\)
\(S(n)=\sum_{i=1}^ng*f-\sum_{i=1}^ng(d)S(\lfloor \frac{n}{d} \rfloor)\)
我们考虑s就是我们要求的答案,g是常函数,那么I*f就是g,所以前半部分即\(\sum_{i=1}^ng(i)\)
分块处理后半部分,复杂度\(O(n^{\frac{2}{3})\)
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1000000+10,maxn=3000000+10,inf=0x3f3f3f3f;
int prime[N],cnt,mu[N];
bool mark[N];
ll f[N];
map<ll,ll>ff;
map<ll,ll>::iterator it1;
ll inv3=qp(3,mod-2);
void init()
{
mu[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
for(int j=i;j<N;j+=i)
{
ll te=1ll*(j/i-2)*(j/i-1)*mu[i];
te=(te%mod+mod)%mod;
add(f[j],te);
}
// printf("%lld\n",f[1000000]);
for(int i=1;i<N;i++)add(f[i],f[i-1]);
}
ll getf(ll n)
{
if(n<N)return f[n];
if((it1=ff.find(n))!=ff.end())return it1->se;
ll ans=n*(n+1)%mod*(n-4)%mod*inv3%mod+2ll*n%mod;
ans=(ans%mod+mod)%mod;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
sub(ans,1ll*(j-i+1)*getf(n/i)%mod);
}
return ff[n]=ans;
}
int main()
{
init();
int T;scanf("%d",&T);
while(T--)
{
ll n;scanf("%lld",&n);
printf("%lld\n",getf(n));
}
return 0;
}
/********************
********************/
hdu5608杜教筛的更多相关文章
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 杜教筛 && bzoj3944 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- 51NOD 1220 约数之和 [杜教筛]
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...
- BZOJ 4176: Lucas的数论 [杜教筛]
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- hihocoder #1456 : Rikka with Lattice(杜教筛)
hihocoder #1456 : Rikka with Lattice(杜教筛) 题意 : 给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部). ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
随机推荐
- 【Spring Security】七、RememberMe配置
一.概述 RememberMe 是指用户在网站上能够在 Session 之间记住登录用户的身份的凭证,通俗的来说就是用户登陆成功认证一次之后在制定的一定时间内可以不用再输入用户名和密码进行自动登录.这 ...
- P3159 [CQOI2012]交换棋子
思路 相当神奇的费用流拆点模型 最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法 S向所有初始是黑 ...
- P4213 【模板】杜教筛(Sum)(杜教筛)
根据狄利克雷卷积的性质,可以在低于线性时间复杂度的情况下,求积性函数前缀和 公式 \[ 求\sum_{i=1}^{n}\mu(i) \] 因为\(\mu*I=\epsilon\) 所以设\(h=\mu ...
- 题解——loj6279 数列分块入门3 (分块)
用set维护有序序列 或许sort也可以,但这题的前驱定义是严格小于 所以要去重 然后就是记得自己打的加法tag在query的时候一定要算上 话说这题数据有点fake啊忘了查询算上自己的标记了还有70 ...
- Java基础 【自动装箱和拆箱、面试题】
JDK 1.5 (以后的版本)的新特性自动装箱和拆箱 1. 自动装箱:把基本类型转换为包装类类型 int a =10; Integer i = new Integer(a); Integer valu ...
- kubernetes 实战5_命令_Assign Pods to Nodes&Configure a Pod to Use a ConfigMap
Assign Pods to Nodes how to assign a Kubernetes Pod to a particular node in a Kubernetes cluster. Ad ...
- CAS实现单点登录SSO执行原理探究超详细
一.不落俗套的开始 1.背景介绍 单点登录:Single Sign On,简称SSO,SSO使得在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. CAS框架:CAS(Centra ...
- Python dict 将元祖转成字典
dict 关键字 dict3=dict(((),(),())) #dict 只有一个参数 输出:{'a': 97, 'b': 98, 'c': 99}
- Centos7安装JDK8以及环境配置
下载,选择centos7 64位版本 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.h ...
- Python3入门 Python3+Selenium做UI页面测试的学习
https://ke.qq.com/course/310732 一直计划着系统地看看Python3,这两天不用加班了,在网上下了些资源,自己演练一番. Python3标识符保留字,直接命令行中可以查看 ...