题目链接

分析:有大佬说可以用线性基写,可惜我不会,这是用DP写的

题目明确说明可到达的位置只与能值有关,和下标无关,我们就可以排个序,这样每个数可以转移的区间就是它的所有后缀

我们可以用dp[i][j]表示到达第i个位置,当前耐久度为j是否可行,那就可以根据走或不走两种情况来安排状态转移

也就是说能判断dp[i]j]能不能到达得看存不存在dp[i-1][j]或者dp[i-1][j^a[i].val](注意,两次异或同一数等于没有异或)

另外,排序会存在相等情况,但是题目说过只能到能级比它小的,所以得特判相等的情况

 #include <bits/stdc++.h>
using namespace std;
const int inf=<<;
typedef long long ll;
const double pi=acos(-);
const int mod=;
const int maxn=;
bool dp[maxn][];//注意第二维不能够只开到3000
struct node{
int id,val;
}a[];
bool cmp(const node& a,const node& b){
return a.val>b.val;
}
int main(){
int n;scanf("%d",&n);
for(int i=;i<n;i++)scanf("%d",&a[i].val),a[i].id=i;
sort(a,a+n,cmp);
for(int i=,flag=;i<n;i++){
if(a[i].id==){
flag=;
dp[i][a[i].val]=;
continue;
}
if(flag) continue;
if(a[i].id==n-){
for(int j=;j>;j--){
dp[i][j]=dp[i-][j^a[i].val];
if(dp[i][j]){
cout<<j<<endl;
return ;
}
}
}
if(a[i].val==a[i-].val){
for(int j=;j>;j--){
dp[i][j]=dp[i-][j];
}
}
else {
for(int j=;j>;j--){
dp[i][j]=dp[i-][j]|dp[i-][j^a[i].val];
}
}
}
cout<<"-1\n";
return ;
}

背包DP 存在异或条件的状态转移问题的更多相关文章

  1. 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp

    题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...

  2. 或与异或 [背包DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 给定\(n\)和长度为\(n\)的数组\(a\) 问从\(a\)中选取任意个数使得其 异或起来的值 等于 或起来的值 的方案数 ...

  3. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  4. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

  5. 算法复习——背包dp

    1.01背包 二维递推式子: 代码: ;i<=n;i++) ;x--) ][x-w[i]]+c[i],f[i-][x]); ][x]; printf("%d",f[n][m] ...

  6. HDU 5119 Happy Matt Friends (背包DP + 滚动数组)

    题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...

  7. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  8. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. 今日头条 CEO 张一鸣:面试了 2000 个年轻人,混得好的都有这 5 种特质

    https://blog.csdn.net/qq_35246620/article/details/72801285 博主说:多了解了解总是好的. 正文 张一鸣算是 80 后中绝对的佼佼者.1983 ...

  2. Google Protobuf结合Netty实践

    1.Win版Protobuf代码生成工具下载: https://github.com/protocolbuffers/protobuf/releases 注意下载protoc-3.6.1-win32. ...

  3. Spring整合Redis&JSON序列化&Spring/Web项目部署相关

    几种JSON框架用法和效率对比: https://blog.csdn.net/sisyphus_z/article/details/53333925 https://blog.csdn.net/wei ...

  4. 题解——洛谷P2294 [HNOI2005]狡猾的商人(差分约束)

    裸的差分约束 dfs判断负环,如果有负环就false,否则就是true 注意有多组数据,数组要清空 #include <cstdio> #include <algorithm> ...

  5. 如何规避Adobe Flash Player中重橙网络的广告弹窗

    具体解决之道,参见卡饭论坛风之咩的帖子:https://bbs.kafan.cn/thread-2123485-1-1.html

  6. 用户管理--借鉴技术大牛ken

    本节内容 useradd userdel usermod groupadd groupdel 用户管理 为什么需要有用户? 1. linux是一个多用户系统 2. 权限管理(权限最小化) 用户:存在的 ...

  7. Java 虚拟机 最易理解的 全面解析

    先上一个最容易理解的类实例化的内存模型案例截图: 转载自:https://www.zybuluo.com/Yano/note/321063 周志明著的<深入理解 Java 虚拟机>的干货~ ...

  8. Python pycharm 常用快捷键

    快捷键 1.编辑(Editing) Ctrl + Space 基本的代码完成(类.方法.属性) Ctrl + Alt + Space 快速导入任意类 Ctrl + Shift + Enter 语句完成 ...

  9. 【Java】【存储&作用域】

    [存储] 1. 寄存器.这是最快的保存群裕,因为它位于和其他所有保存方式不同的地方:处理器内部.然而,寄存器的数量有限,所以寄存器是根据需要由编译器分配.我们对此没有直接的控制权,也不可能在自己的程序 ...

  10. _itemmod_extra_equipments

    双甲 可以控制获得属性的倍率,及是否可以取回物 `stat_muil`属性倍率(item_template中stat) `enchant_muil`附魔效果中的属性倍率(一些附魔会提升属性,可在些配置 ...