最大的矩形面积 Maximal Rectangle
2018-09-15 10:23:44
一、Largest Rectangle in Histogram
在求解最大的矩形面积之前,我们先讨论一条最大直方图面积的问题。
问题描述:

问题求解:
解法一、朴素解法,O(n ^ 2)。
解决的思路就是遍历一遍,如果当前的数比后一个数要小,那么当前的额数字肯定不可能是最大面积的右边界,遍历下一个数;
如果当前数比后一个大,那么假设当前的为右边界,向左进行遍历,计算面积最大值。
public int largestRectangleArea(int[] heights) {
if (heights.length == 0) return 0;
int res = 0;
for (int i = 0; i < heights.length; i++) {
if (i == heights.length - 1 || heights[i] > heights[i + 1]) {
int minHeight = heights[i];
for (int j = i; j >= 0; j--) {
minHeight = Math.min(heights[j], minHeight);
res = Math.max(res, minHeight * (i - j + 1));
}
}
}
return res;
}
解法二、使用堆栈,时间复杂度O(n)。
如何更快的解决这个问题呢?这里需要从另一个角度来考虑这个问题,其实解法一也是一种类似DP的解法,它的核心思路就是固定最后一个数,来获得以当前数为结尾的最大矩形面积。其实还有另一个角度来思考,就是以每个数作为高度能获得的最大面积是多少?其实这个问题就是需要找当前数左右第一个比其低的数,然后就可以得出以当前数字为高度的最大矩形面积,最后我们只需要遍历比较一遍就可以得到最大的结果。
public int largestRectangleArea(int[] nums) {
int n = nums.length;
int[] l = new int[n];
int[] r = new int[n];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < nums.length; i++) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
l[i] = stack.isEmpty() ? 0 : stack.peek() + 1;
stack.push(i);
}
stack.clear();
for (int i = nums.length - 1; i >= 0; i--) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
r[i] = stack.isEmpty() ? nums.length - 1 : stack.peek() - 1;
stack.push(i);
}
int res = 0;
for (int i = 0; i < n; i++) {
res = Math.max(res, nums[i] * (r[i] - l[i] + 1));
}
return res;
}
二、Maximal Rectangle
问题描述:

问题求解:
有个上一个问题的铺垫,这个问题就很好解决了,针对每一行,可以先求出其高度,然后再对每一行求最大最方图的面积,取max即可。
使用一个height的二维数组进行高度的保存,可以将时间复杂度降到O(mn)。
public int maximalRectangle(char[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) return 0;
int m = matrix.length;
int n = matrix[0].length;
int[][] height = new int[m][n];
for (int i = 0; i < n; i++) if (matrix[0][i] == '1') height[0][i] = 1;
for (int i = 1; i < m; i++) {
for (int j = 0;j < n; j++) {
if (matrix[i][j] == '0') height[i][j] = 0;
else height[i][j] = 1 + height[i - 1][j];
}
}
int res = 0;
for (int i = 0; i < m; i++) {
res = Math.max(res, helper(height[i]));
}
return res;
}
private int helper(int[] nums) {
int n = nums.length;
int[] l = new int[n];
int[] r = new int[n];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < nums.length; i++) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
l[i] = stack.isEmpty() ? 0 : stack.peek() + 1;
stack.push(i);
}
stack.clear();
for (int i = nums.length - 1; i >= 0; i--) {
while (!stack.isEmpty() && nums[stack.peek()] >= nums[i]) stack.pop();
r[i] = stack.isEmpty() ? nums.length - 1 : stack.peek() - 1;
stack.push(i);
}
int res = 0;
for (int i = 0; i < n; i++) {
res = Math.max(res, nums[i] * (r[i] - l[i] + 1));
}
return res;
}
最大的矩形面积 Maximal Rectangle的更多相关文章
- LeetCode 84--柱状图中最大的矩形( Largest Rectangle in Histogram) 85--最大矩形(Maximal Rectangle)
84题和85五题 基本是一样的,先说84题 84--柱状图中最大的矩形( Largest Rectangle in Histogram) 思路很简单,通过循环,分别判断第 i 个柱子能够延展的长度le ...
- [Swift]LeetCode850. 矩形面积 II | Rectangle Area II
We are given a list of (axis-aligned) rectangles. Each rectangle[i] = [x1, y1, x2, y2] , where (x1, ...
- LeetCode 223. 矩形面积(Rectangle Area)
223. 矩形面积 223. Rectangle Area 题目描述 在二维平面上计算出两个由直线构成的矩形重叠后形成的总面积. 每个矩形由其左下顶点和右上顶点坐标表示,如图所示. LeetCode2 ...
- 求解最大矩形面积 — leetcode 85. Maximal Rectangle
之前切了道求解最大正方形的题,题解猛戳 这里.这道题 Maximal Rectangle 题意与之类似,但是解法完全不一样. 先来看这道题 Largest Rectangle in Histogram ...
- [LeetCode] Maximal Rectangle 最大矩形
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...
- [LeetCode] 85. Maximal Rectangle 最大矩形
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and ...
- [LeetCode] Rectangle Area 矩形面积
Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...
- Largest Rectangle in a Histogram(最大矩形面积,动态规划思想)
Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- [Swift]LeetCode223. 矩形面积 | Rectangle Area
Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle is defined b ...
随机推荐
- MySql数据库概念
一.什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的建立在计算机存储设备上的仓库. 简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行 ...
- 20165310 NetSec2019 Week5 Exp3 免杀原理与实践
20165310 NetSec2019 Week5 Exp3 免杀原理与实践 一.免杀原理 杀软是如何检测出恶意代码的 基于特征码的检测:特征码就是一段恶意程序有但是正常程序没有的一段代码,当杀软检测 ...
- 对浏览器攻击:MS10-002
对浏览器攻击:MS10-002 MS10-002漏洞介绍 针对微软Internet Explorer"极光"内存损坏的攻击,当用户查看特制网页时允许远程执行代码. 实践过程 命令行 ...
- Office 2016 永久激活
启示:office突然过期,QWQ,卖电脑的真坑爹,找了好多办法,总结2个不花钱的办法啦. 1>只有30天试用期 Office 2016预览版序列号:NKGG6-WBPCC-HXWMY-6DQG ...
- Codeforces 581F Zublicanes and Mumocrates - 树形动态规划
It's election time in Berland. The favorites are of course parties of zublicanes and mumocrates. The ...
- 动态规划之97 Interleaving String
题目链接:https://leetcode-cn.com/problems/interleaving-string/description/ 参考链接:https://blog.csdn.net/u0 ...
- 如何在servlet中获取spring创建的bean
package com.yxf.controller; import java.io.IOException; import javax.servlet.ServletException; impor ...
- topcoder srm 710 div1 -23
1.给定两个长度都为$n$的数组$A,B$,给出一个操作序列将$A$变成$B$.每个操作可以是以下两种之一:(1)选择一个$i,0\leq i <n$且$A_{i} \neq 0$,令$t=A_ ...
- Oracle常用函数——COALESCE
COALESCE 含义:COALESCE是一个函数, (expression_1, expression_2, ...,expression_n)依次参考各参数表达式,遇到非null值即停止并返回该值 ...
- e信与酸酸结合开wifi使用路由器上网
关于e信"正常情况下"使用路由器网上是有方法的,入户线插上lan,电脑接lan拨号 我想要说的是连接e信后使用路由器上网,并且是绝对正常的思维 手机也是可以连接上wifi,但是手机 ...