校内OJ上的题,刚开始做的时候以为是道SB题10分钟就能搞完..

然后准备敲了才发现自己是个SB..

刚开始以为是个很裸的TreeDP,然后就只设了两个状态,但是怎么想怎么不对。复杂度好像要爆炸。改成左儿子右兄弟好像根本无法转移..

搜了搜题解,发现不用改成左儿子右兄弟,把两个状态改成三个状态就行了

$f[node][0]$ 在$node$节点的子树被覆盖且$node$被建立

$f[node][1]$ 在$node$节点的子树被覆盖且$node$未被建立

$f[node][2]$ 在$node$节点的子树均被覆盖但是$node$未被覆盖

然后对于$f[node][0]$和$f[node][2]$的状态转移方程可以很好的写出

$f[node][0]=\sum min(f[son][0],f[son][1],f[son][2])+1$

$f[node][2]=\sum f[son][1]$

$f[node][1]$相对来说有些麻烦,状态转移方程没那么好写。简单说一下就是$\sum min(f[son][1],f[son][0])$ 但是限制存在,是必须存在一个$son$的状态为$0$,所以需要在代码上加一些小处理。

需要注意的是,这里的状态必须为$0$的$son$并不是值最小的,而是和状态为$1$的比起来差值最大的。

代码实现上也存在一些细节,不多说。

 //OJ 1946
 //by Cydiater
 //2016.9.18
 #include <iostream>
 #include <cstdio>
 #include <cstring>
 #include <string>
 #include <algorithm>
 #include <queue>
 #include <map>
 #include <ctime>
 #include <cmath>
 #include <cstdlib>
 #include <iomanip>
 using namespace std;
 #define ll long long
 #define up(i,j,n)        for(int i=j;i<=n;i++)
 #define down(i,j,n)        for(int i=j;i>=n;i--)
 ;;
 ;
 inline ll read(){
     ,f=;
     ;ch=getchar();}
     +ch-';ch=getchar();}
     return x*f;
 }
 ll N,f[MAXN][],LINK[MAXN],len=;
 struct edge{
     ll y,next;
 }e[MAXN];
 namespace solution{
     inline void insert(int x,int y){e[++len].next=LINK[x];LINK[x]=len;e[len].y=y;}
     void init(){
         N=read();
         up(i,,N){
             int x=read(),y=read();
             insert(x,y);
             insert(y,x);
         }
     }
     void TreeDP(int node,int fa){
         f[node][]=;ll sum=;
         for(int i=LINK[node];i;i=e[i].next)if(e[i].y!=fa){
             TreeDP(e[i].y,node);
             f[node][]+=f[e[i].y][];
             f[node][]+=min(f[e[i].y][],min(f[e[i].y][],f[e[i].y][]));
             sum+=min(f[e[i].y][],f[e[i].y][]);
         }
         f[node][]=oo;
         for(int i=LINK[node];i;i=e[i].next)if(e[i].y!=fa){
             f[node][]=min(f[node][],sum-min(f[e[i].y][],f[e[i].y][])+f[e[i].y][]);
         }
     }
     void output(){
         cout<<min(f[][],f[][])<<endl;
     }
 }
 int main(){
     //freopen("input.in","r",stdin);
     using namespace solution;
     init();
     TreeDP(,);
     output();
     ;
 }

POJ3659 [usaco2008jan_gold]电话网络的更多相关文章

  1. poj2436,poj3659,poj2430

    这两题都体现了dp的核心:状态 dp做多就发现,状态一设计出来,后面的什么都迎刃而解了(当然需要优化的还要动动脑筋): 先说比较简单的: poj2436 由题得知病毒种数<=15很小,于是我们就 ...

  2. BZOJ1596: [Usaco2008 Jan]电话网络

    1596: [Usaco2008 Jan]电话网络 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 513  Solved: 232[Submit][S ...

  3. poj3659树状DP

    Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6273   Accepted: 225 ...

  4. 1596: [Usaco2008 Jan]电话网络

    1596: [Usaco2008 Jan]电话网络 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 601  Solved: 265[Submit][S ...

  5. 3336 /P1948电话网络(二分答案)

    3336 电话网络  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 黄金 Gold       题目描述 Description 由于地震使得连接汶川县城电话线全部损坏,假如你是 ...

  6. 10.22~10.28一周经典题目整理(meeting,BZOJ4377,POJ3659)

    meeting:给正n边形每个点染上黑色或者白色,问有多少个同色的等腰三角形. 以正五边形为例这里将最上面的点作为顶点,得到若干对相等的腰 ,注意到以最上面的点作为顶点的等腰三角形的个数,等于颜色相等 ...

  7. 【bzoj1596】[Usaco2008 Jan]电话网络

    题目描述 Farmer John决定为他的所有奶牛都配备手机,以此鼓励她们互相交流.不过,为此FJ必须在奶牛们居住的N(1 <= N <= 10,000)块草地中选一些建上无线电通讯塔,来 ...

  8. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  9. BZOJ 1596: [Usaco2008 Jan]电话网络

    Description Farmer John决定为他的所有奶牛都配备手机,以此鼓励她们互相交流.不过,为此FJ必须在奶牛们居住的N(1 <= N <= 10,000)块草地中选一些建上无 ...

随机推荐

  1. Java 的世界,我不懂:奇葩的 json 序列化

    先上张图,代表我心中的十万头草泥马: 写这么长的代码,头回见数组和单个实体共用同一个 json 节点的! 恐怕只有 java 社区的大牛B 才能做出这等事.. 由 Apache 发布: http:// ...

  2. GWT-Dev-Plugin(即google web toolkit developer plugin)for Chrome的安装方法

    如果你想要在Chrome中进行GWT调试,需要安装“gwt developer plugin for chrome”,但是普通安装模式下,会提示: This application is not su ...

  3. windows设置开机启动项

    一.windows下设置开机启动有如下方法 1 注册表启动项目RUN 2 计划任务,在"windows管理">"计划任务管理器"中新建任务,在操作栏指定要 ...

  4. 3n+1b 备忘录方法

    题目详情 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜 ...

  5. python内置数据类型-字典和列表的排序 python BIT sort——dict and list

    python中字典按键或键值排序(我转!)   一.字典排序 在程序中使用字典进行数据信息统计时,由于字典是无序的所以打印字典时内容也是无序的.因此,为了使统计得到的结果更方便查看需要进行排序. Py ...

  6. java/c# 判断点是否在多边形区域内

    java/c# 判断点是否在多边形区域内 年06月29日 ⁄ 综合 ⁄ 共 1547字 ⁄ 字号 小 中 大 ⁄ 评论关闭 最近帮别人解决了一个问题,如何判断一个坐标点,是否在多边形区域内(二维). ...

  7. jq不包含某属性

    jq解释属性选择器时有以下四种: 上面都是带某属性或者属性为某值的情况,还有一种情况是不带某属性怎么办? 答案是同属性不为某值. 如 <a b='c' class="d"&g ...

  8. 模拟发送http请求

    1.httpie 2.postman:Postman是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件. 3.fiddler

  9. [转]JS中对象与字符串的互相转换

    原文地址:http://www.cnblogs.com/luminji/p/3617160.html 在使用 JSON2.JS 文件的 JSON.parse(data) 方法时候,碰到了问题: thr ...

  10. [转]javascript Date format(js日期格式化)

    方法一:这个很不错,好像是 csdn 的 Meizz 写的: // 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s).季度(q)  ...