Given 2 permutations of integers from 1 to N, you need to find the minimum number of operations necessary to change both or any one of them in such a way that they become exactly same. Here only two operations are allowed: either you can delete an integer from any position or you can insert an integer into any position, but replacing one integer by another one is not allowed. Say, N = 5 and the permutations are {1, 3, 5, 4, 2} and {1, 5, 4, 3, 2}. Then we need just 2 operations: we need to delete 3 from the 2nd position and insert it in the 4th position of the first permutation, or we can delete 3 from both the permutations, which also needs two operations.

Input

First line of the input contains a positive integer T (T ≤ 40). Each of the following T cases contains 3 lines for each case: the 1st line contains a single integer N (1 ≤ N ≤ 200, 000) and the next two lines contain the two permutations of the integers.

Output

For each case, print a line of the form ‘Case < x >: < y >’, where x is the case number and y is the number of operations necessary to covert the 1st permutation to the 2nd permutation.

Sample Input

2 5 1 3 5

4 2 1 5 4

3 2 4 1 2

4 3 3 4 2 1

Sample Output

Case 1: 2

Case 2: 6

#include<bits/stdc++.h>
using namespace std;
const int M = 2e5 + 10 , inf = 0x3f3f3f3f;
int n ;
int orm[M] ;
int a[M] ;
int Top[M] ;
int judge (int x) {
int l = 0 , r = n ;
int ret = l ;
while (l <= r) {
int mid = l+r >> 1 ;
if (x > Top[mid]) {
ret = mid ;
l = mid+1 ;
}
else r = mid-1 ;
}
Top[ret+1] = min (Top[ret+1] , x) ;
return ret+1 ;
} int LIS () {
int ans = 0 ;
for (int i = 1 ; i <= n ; i ++) {
ans = max (ans , judge (a[i])) ;
}
return ans ;
} int main () {
int T ;
scanf ("%d" , &T ) ;
for (int cas = 1 ; cas <= T ; cas ++) {
scanf ("%d" , &n) ;
for (int i = 1 ; i <= n ; i ++) {
int x ;
scanf ("%d" , &x) ;
orm[x] = i ;
Top[i] = inf ;
}
for (int j = 1 ; j <= n ; j ++) {
int x ;
scanf ("%d" , &x) ;
a[j] = orm[x] ;
}
printf ("Case %d: %d\n" , cas , (n-LIS ())*2) ;
}
return 0 ;
}

  要灵活运用他是一个1~n的排列。

然后你就能把lcs变成lis了。

Back to Edit Distance(LCS + LIS)的更多相关文章

  1. CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)

    CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...

  2. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  3. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

  4. [LeetCode] Edit Distance(很好的DP)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  5. [leetcode72]Edit Distance(dp)

    题目链接:https://leetcode.com/problems/edit-distance/ 题意:求字符串的最短编辑距离,就是有三个操作,插入一个字符.删除一个字符.修改一个字符,最终让两个字 ...

  6. [HAOI2010]最长公共子序列(LCS+dp计数)

    字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...

  7. 题解报告:poj 2689 Prime Distance(区间素数筛)

    Description The branch of mathematics called number theory is about properties of numbers. One of th ...

  8. 71.Edit Distance(编辑距离)

    Level:   Hard 题目描述: Given two words word1 and word2, find the minimum number of operations required ...

  9. HDU5812 Distance(枚举 + 分解因子)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5812 Description In number theory, a prime is a ...

随机推荐

  1. 帝国cms一些常用的修改路径

    1.信息提示改成弹出框提示 修改e/message/index.php 2.修改提示信息 语言包e/data/language/gb/pub/q_message.php 3.文章设置权限后没登录提示模 ...

  2. 解决 Ubuntu 无法调节屏幕亮度的问题(转)

    转http://blog.163.com/tym190@126/blog/static/8776005920143192412477/ 终端输入代码:     在打开文件中找到 GRUB_CMDLIN ...

  3. 【Beta版本】冲刺-Day4

    队伍:606notconnected 会议时间:12月12日 目录 一.行与思 二.站立式会议图片 三.燃尽图 四.代码Check-in 一.行与思 张斯巍(433) 今日进展:协助队友完成界面的修改 ...

  4. java编程思想-接口总结

    "确定接口是理想选择,因而应该总是选择接口而不是具体的类."这其实是一种诱饵.当然,对于创建类,几乎在任何时刻,都可以替代为创建一个接口和一个工厂. 许多人都掉进了这种诱惑的陷阱, ...

  5. Objective-C之字典

    //字典:(关键字 值) //插入代码字太小 //        NSArray *array = [NSArray array];//空数组 //        NSDictionary *dict ...

  6. IOS 中的CoreImage框架(framework)

    http://www.cnblogs.com/try2do-neo/p/3601546.html coreimage framework 组成 apple 已经帮我们把image的处理分类好,来看看它 ...

  7. WinForm------如何跳转另一个窗口,同时关闭当前窗口

    添加一个按钮,并为按钮添加点击事件(注:Frm_Main为需要跳转的窗口名字) private void Btn_OK_Click(object sender, EventArgs e) { //打开 ...

  8. INADDR_ANY

    INADDR_ANY就是指定地址为0.0.0.0的地址,这个地址事实上表示不确定地址,或“所有地址”.“任意地址”. 一般来说,在各个系统中均定义成为0值. 外文名 INADDR_ANY 别 名 所有 ...

  9. Distinct

    SELECT 指令让我们能够读取表格中一个或数个栏位的所有资料.这将把所有的资料都抓出,无论资料值有无重复.在资料处理中,我们会经常碰到需要找出表格内的不同资料值的情况.换句话说,我们需要知道这个表格 ...

  10. Tomcat server.xml配置

    参考文献:http://www.cnblogs.com/xdp-gacl/p/3734395.html 一.Tomcat配置虚拟主机 方法:在conf/server.xml里配置Host元素,其中na ...