Back to Edit Distance(LCS + LIS)
Given 2 permutations of integers from 1 to N, you need to find the minimum number of operations necessary to change both or any one of them in such a way that they become exactly same. Here only two operations are allowed: either you can delete an integer from any position or you can insert an integer into any position, but replacing one integer by another one is not allowed. Say, N = 5 and the permutations are {1, 3, 5, 4, 2} and {1, 5, 4, 3, 2}. Then we need just 2 operations: we need to delete 3 from the 2nd position and insert it in the 4th position of the first permutation, or we can delete 3 from both the permutations, which also needs two operations.
Input
First line of the input contains a positive integer T (T ≤ 40). Each of the following T cases contains 3 lines for each case: the 1st line contains a single integer N (1 ≤ N ≤ 200, 000) and the next two lines contain the two permutations of the integers.
Output
For each case, print a line of the form ‘Case < x >: < y >’, where x is the case number and y is the number of operations necessary to covert the 1st permutation to the 2nd permutation.
Sample Input
2 5 1 3 5
4 2 1 5 4
3 2 4 1 2
4 3 3 4 2 1
Sample Output
Case 1: 2
Case 2: 6
#include<bits/stdc++.h>
using namespace std;
const int M = 2e5 + 10 , inf = 0x3f3f3f3f;
int n ;
int orm[M] ;
int a[M] ;
int Top[M] ;
int judge (int x) {
int l = 0 , r = n ;
int ret = l ;
while (l <= r) {
int mid = l+r >> 1 ;
if (x > Top[mid]) {
ret = mid ;
l = mid+1 ;
}
else r = mid-1 ;
}
Top[ret+1] = min (Top[ret+1] , x) ;
return ret+1 ;
} int LIS () {
int ans = 0 ;
for (int i = 1 ; i <= n ; i ++) {
ans = max (ans , judge (a[i])) ;
}
return ans ;
} int main () {
int T ;
scanf ("%d" , &T ) ;
for (int cas = 1 ; cas <= T ; cas ++) {
scanf ("%d" , &n) ;
for (int i = 1 ; i <= n ; i ++) {
int x ;
scanf ("%d" , &x) ;
orm[x] = i ;
Top[i] = inf ;
}
for (int j = 1 ; j <= n ; j ++) {
int x ;
scanf ("%d" , &x) ;
a[j] = orm[x] ;
}
printf ("Case %d: %d\n" , cas , (n-LIS ())*2) ;
}
return 0 ;
}
要灵活运用他是一个1~n的排列。
然后你就能把lcs变成lis了。
Back to Edit Distance(LCS + LIS)的更多相关文章
- CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)
CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- Minimum edit distance(levenshtein distance)(最小编辑距离)初探
最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...
- [LeetCode] Edit Distance(很好的DP)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [leetcode72]Edit Distance(dp)
题目链接:https://leetcode.com/problems/edit-distance/ 题意:求字符串的最短编辑距离,就是有三个操作,插入一个字符.删除一个字符.修改一个字符,最终让两个字 ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...
- 题解报告:poj 2689 Prime Distance(区间素数筛)
Description The branch of mathematics called number theory is about properties of numbers. One of th ...
- 71.Edit Distance(编辑距离)
Level: Hard 题目描述: Given two words word1 and word2, find the minimum number of operations required ...
- HDU5812 Distance(枚举 + 分解因子)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5812 Description In number theory, a prime is a ...
随机推荐
- 关于git不区分文件名大小写的处理
今天遇到了git不区分文件名大小写的问题,一开始着实郁闷了一把. 处理办法: windows下在git中修改文件的大小写 git mv --force myfile MyFile 或者 git mv ...
- type parameters of <T>T cannot be determined; no unique maximal instance exists for type variable T with upper bounds int,java.lang.Object
今天在进行代码检查的时候出现下面的异常: type parameters of <T>T cannot be determined; no unique maximal instance ...
- POJ 1804 Brainman(归并排序)
传送门 Description Background Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted ...
- 【Alpha版本】冲刺-Day2
队伍:606notconnected 会议时间:11月10日 会议总结 张斯巍(433) 今天安排:把昨天没完成的做好,主界面图标的修改,侧边栏背景设计 完成度:85% 明天计划:个人信息界面设计.优 ...
- Java 序列化Serializable接口
1 什么是序列化和反序列化 Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization是一种将这些字节重建成一个对象的过程. 2 什么情况下需要 ...
- JavaWeb学习总结-04 Servlet 学习和使用
一 Servlet 1 Servlet概念 Servlet时运行在服务器端的Java程序. Servlet的框架核心是 javax.servlet.Servlet 接口. 所有自定义的Servlet都 ...
- 七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)
http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法, ...
- BZOJ树链剖分题目汇总
1036,2157,2243,4034,4196;2325,2908,3083,3159,3531,3626,3999;可以不树剖:1146;2819,2843,4448,4530.
- orancle的安装和配置
1.安装 Oracle 版本:Oracle Database 10g Release 2 (10.2.0.1) 下载地址: http://www.oracle.com/technology/softw ...
- Redis+Spring缓存实例
转自:小宝鸽 一.Redis了解 1.1.Redis介绍: redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).lis ...