写在前面:忍不住吐槽几句今天上海的天气,次奥,鞋子里都能养鱼了...裤子也全湿了,衣服也全湿了,关键是这天气还打空调,只能瑟瑟发抖祈祷不要感冒了....

前后切了一百零几道leetcode的题(solution同步在github),主要是拣难度系数定为easy的水题做...好吧,这是第一道算法题。不知哪位大神说的,所有的语言都会过时,只有数据结构和算法才是永恒。

今天要重点讲的是优雅的Manacher算法,先来看这道题Longest Palindromic Substring,题目很简单,给你一个字符串,找到最长的回文子串。啥叫回文串?就是前后看都一样的串,比如abcbaabba,因为题目给的数据量不大(1000),所以可以枚举字符串的每个位置当做回文对称点,回文对称点是我给它的一个概念,比如abcba的回文对称点就是idx=2也就是c的位置。But!并不是每个回文串都有对称点,比如abba,只有对称轴,它就没有点!怎么办?机智的coder想出了一个简单的用空间换取代码实现复杂度的方法,这也是Manacher算法的第一步:

abcba -> #a#b#c#b#a#
abba  -> #a#b#b#a#

这么一来,每个回文串就都有回文对称点了(可能是字母,也可能是#)。之后我们就能枚举对称点,然后向两边扩散开去,比较字符是否一样。为了不用判断是否已经到了边界,我们最初在字符串的开头再加个字符*,只要该字符和#以及字符串里其他字符都不一致即可。这样是可以AC的,虽然复杂度达到了O(n^2)。接下去我们介绍复杂度为O(n)的Manacher算法。

我们试着以字符串babcbade举例,首先把字符串像上面一样变形:

babcbade -> *#b#a#b#c#b#a#d#e#

然后我们设置一个dp数组,dp[i]表示以变形后第i个元素为对称点的最长回文子串的半径,同样以上面的字符串举例,可以得到dp数组:

*#b#a#b#c#b#a#d#e#
112121216121212121

我们可以很容易地发现,要求的最长回文子串的长度即dp数组最大值减去1。于是如何快速地求得该数组成为关键。假设我们已经得到了dp[6]的值,dp[10]的初始值也不难确定,因为它们两个元素根据idx=8对称(#a#b#c#b#a#),所以可以不用从1开始向两边扩散了。

我们用maxn维护当前存在的回文子串能达到最右的位置+1(maxn位置不可达到),用idx维护当前能到达最右+1的回文子串的回文中心点位置,实现该dp数组求值的核心代码如下:

for (var i = 1, len = str.length; i < len; i++) {
  if (maxn > i) dp[i] = Math.min(dp[2 * idx - i], maxn - i);
  else dp[i] = 1;

  while (str[i - dp[i]] === str[i + dp[i]]) dp[i]++;

  if (dp[i] + i > maxn)
    maxn = dp[i] + i, idx = i;
}

完整的AC代码:

// return the Longest Palindromic Substring of s
function Manacher(s) {
  var str = '*#'
    , dp = []
    , maxn = 0
    , idx = 0;

  for (var i = 0, len = s.length; i < len; i++)
    str += s[i] + '#';

  for (var i = 1, len = str.length; i < len; i++) {
    if (maxn > i) dp[i] = Math.min(dp[2 * idx - i], maxn - i);
    else dp[i] = 1;

    while (str[i - dp[i]] === str[i + dp[i]]) dp[i]++;

    if (dp[i] + i > maxn)
      maxn = dp[i] + i, idx = i;
  }

  var ans = 0
    , pos;

  for (var i = 1; i < len; i++) {
    if (dp[i] > ans)
      ans = dp[i], pos = i;
  }

  var f = str[pos] === '#'
    , tmp = f ? '' : str[pos]
    , startPos = f ? pos + 1 : pos + 2
    , endPos = f ? dp[pos] - 3 + startPos : dp[pos] - 4 + startPos;

  for (var i = startPos; i <= endPos; i += 2)
    tmp = str[i] + tmp + str[i];

  return tmp;
}

var longestPalindrome = function(s) {
  var str = Manacher(s);
  return str;
};

求最长回文子串 - leetcode 5. Longest Palindromic Substring的更多相关文章

  1. 最长回文子串-LeetCode 5 Longest Palindromic Substring

    题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  2. hdu 3068 最长回文(manachar求最长回文子串)

    题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...

  3. PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  4. Manacher模板( 线性求最长回文子串 )

    模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...

  5. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

  6. 后缀数组 - 求最长回文子串 + 模板题 --- ural 1297

    1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a ...

  7. Manacher算法 O(n) 求最长回文子串

    转自:http://bbs.dlut.edu.cn/bbstcon.php?board=Competition&gid=23474 其实原文说得是比较清楚的,只是英文的,我这里写一份中文的吧. ...

  8. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  9. manacher算法求最长回文子串

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

随机推荐

  1. Asp.net MVC的Model Binder工作流程以及扩展方法(2) - Binder Attribute

    上篇文章中分析了Custom Binder的弊端: 由于Custom Binder是和具体的类型相关,比如指定类型A由我们的Custom Binder解析,那么导致系统运行中的所有Action的访问参 ...

  2. 可输出sql的PrepareStatement封装

    import java.io.InputStream; import java.io.Reader; import java.net.URL; import java.sql.Connection; ...

  3. jq+css+html简单实现导航下拉菜单

    相信导航栏下拉菜单是web开发最常见的一个item了.这里就不做介绍了,直接上code. Html部分 <div class="_nav"> <ul id=&qu ...

  4. MongoDB与衍生版的TokuMX对比

    为什么会出现TokuMX呢? 查阅大量的资料和翻阅一些大牛的博客发现,MongoDB作为nosql派别的一个典型非关系型数据库其实存在许多缺陷不足之处. 然后肯定就会有有人跳出来,来做一个衍生的东西, ...

  5. 【Oracle XE系列之一】Windows10_X64环境 安装Oracle XE11gR2 X64数据库

    一.安装 1.去Oracle官网下载XE版的安装包[下载路径](Oracle Database Express Edition 11g Release 2 for Windows x64),解压. 2 ...

  6. LNMP源码安装

    1. mysql安装 # Preconfiguration setup shell > groupadd mysql shell > useradd -r -g mysql -s /bin ...

  7. LaTeX字体相关

    以下内容均来自网络.   字体命令: 相应的字体声明都有相应的字体命令 family: \textrm{文本} \texttt{ } \textsf{  } shape : \textup{文本} \ ...

  8. jquery常用方法

    一.多个按钮绑定同一事件 $("#index_svip,#index_svip_renew").click(function() { seajs.use(['svipLayer'] ...

  9. 【HTML5】标记文字

    1.用基本的文字元素标记内容 先看显示效果: 对应HTML代码: <!DOCTYPE html> <html lang="en"> <head> ...

  10. 「Mobile Testing Summit China 2016」 中国移动互联网测试大会-议题征集

    时至北京盛夏,一场由 TesterHome 主办的关于移动互联网测试技术的盛会正在紧锣密鼓的筹备中.只要你关注软件质量,热爱测试,期待学习,都欢迎你加入这次移动测试技术大会中和我们一起分享经验.探讨话 ...