BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets
考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况。
然后将后一半的状态按照和排序,$O(2^\frac{n}{2})$枚举前一半的每一个选择情况的状态,将该选择情况下所有状态按和排序,然后通过双指针求出所有合法状态。
时间复杂度$O(6^\frac{n}{2})$。
#include<cstdio>
#include<algorithm>
const int N=20,M=1<<10,E=59100;
int n,n0,i,j,k,a[N],g[M],v[E],nxt[E],ed,m,q[M],ce,ans;bool vis[1<<N];
struct P{int s,S;}e[E];
inline bool cmp(const P&a,const P&b){return a.s<b.s;}
void dfsl(int x,int s,int S){
if(x==n0){v[++ed]=s;nxt[ed]=g[S];g[S]=ed;return;}
dfsl(x+1,s,S);
dfsl(x+1,s+a[x],S|(1<<x));
dfsl(x+1,s-a[x],S|(1<<x));
}
void dfsr(int x,int s,int S){
if(x==n){e[ce].s=s;e[ce++].S=S;return;}
dfsr(x+1,s,S);
dfsr(x+1,s+a[x],S|(1<<x));
dfsr(x+1,s-a[x],S|(1<<x));
}
int main(){
scanf("%d",&n);n0=(n+1)/2;
for(i=0;i<n;i++)scanf("%d",&a[i]);
dfsl(0,0,0),dfsr(n0,0,0);
std::sort(e,e+ce,cmp);
for(i=0;i<1<<n0;i++){
for(m=0,j=g[i];j;j=nxt[j])q[m++]=v[j];
std::sort(q,q+m);
for(j=k=0;j<ce;j++){
while(k<m&&q[k]<e[j].s)k++;
if(k==m)break;
if(q[k]==e[j].s)vis[i|e[j].S]=1;
}
}
for(i=1;i<1<<n;i++)if(vis[i])ans++;
return printf("%d",ans),0;
}
BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets的更多相关文章
- bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)
2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 462 Solv ...
- BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
- 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469
题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...
- bzoj2679:[Usaco2012 Open]Balanced Cow Subsets
思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...
- [Usaco2012 Open]Balanced Cow Subsets
Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...
- 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets
[算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...
- BZOJ.2679.Balanced Cow Subsets(meet in the middle)
BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...
- SPOJ-SUBSET Balanced Cow Subsets
嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...
随机推荐
- iOS自动更新如何实现
APP检测更新可以使用两种方法.第一种是和安卓等系统一样,获取自己服务器的APP版本号与已安装的APP版本号比较:第二种是根据已发布到app store上的应用版本号与已安装的APP版本号比较更新.第 ...
- 第二课 less的学习以及移动端需要注意的问题
一.LESS的学习笔记: 1.less介绍:一种动态样式语言.less将css赋予了动态语言的特性,如变量,继承,运算,函数,less既可以在客户端上运行(支持IE6+,webkit,firefox) ...
- linux中解决SSH连接慢问题 关键点GSSAPIAuthentication
[root@ok 6FE5-D831]# ssh -v xxx.xxx.xxx.64 OpenSSH_5.3p1, OpenSSL Feb debug1: Reading configuration ...
- jQuery插件:跨浏览器复制jQuery-zclip(转载)
转载地址:http://www.cnblogs.com/linjiqin/p/3532451.html jQuery-zclip是一个复制内容到剪贴板的jQuery插件,使用它我们不用考虑不同浏览器和 ...
- Redis处理文件日志并发(2)
多线程操作同一个文件时会出现并发问题.解决的一个办法就是给文件加锁(lock),但是这样的话,一个线程操作文件时,其它的都得等待,这样的话性能非常差.另外一个解决方案,就是先将数据放在队列中,然后开启 ...
- x86架构的android手机兼容性问题
x86架构的android手机兼容性问题 http://www.cnblogs.com/guoxiaoqian/p/3984934.html 自从CES2012上Intel发布了针对移动市场的Medf ...
- SQL Server排序规则
在使用数据库的过程中,总会碰到一些特别的需求.有时候需要储存中文字符,区分大小写或者按照中文的比划顺序排序.这就涉及到了对数据库排列规则的选择. 我们一般可以选择数据库名称-->右键属性(Pro ...
- select * from salgrade for update和select * from salgrade for update nowait区别
1,select * from salgrade for update session1 session2 SQL> delete salgrade where grade=1; 1 row d ...
- NBU expired Media,Media ID not found in EMM database
Subject:When attempting to expire a media in Veritas NetBackup (tm) 6.0 with the bpexpdate command, ...
- Oracle【IT实验室】数据库备份与恢复之六:LogMiner
6.1 LogMiner 的用途 Oracle LogMiner 是Oracle公司从产品8i以后提供的一个实际非常有用的分析工具,使用该工具可以轻松获得 Oracle 重作日志文件(归档日志文件) ...