Surf特征提取分析

Surf
Hessian
SIFT
读“H.Bay, T. Tuytelaars, L. V. Gool, SURF:Speed Up Robust Features[J],ECCV,2006”笔记

SURF:Speed Up Robust Features,加速鲁棒特征。

我觉得SURF是SIFT特征的一种近似计算,在相似性能甚至更好性能的同时提高了算法的速度。这些近似体现在

  • 在尺度空间中,使用box filtes与原图像卷积,而不是使用DoG算子

  • 确定关键点方向时,Surf是利用不同方向bin中的haar小波响应的最大值最为方向,而Sift是统计周围区域像素点的方向直方图,找出最大方向bin作为主方向,而且还可以有多个方向。

  • 特征描述子,Surf在关键点周围取区域分成44块小区域,在每个小区域计算采样点的haar响应,统计对应的四个特征,共64维特征,而Sift在周围1616的区域划分成4*4的子区域,每一个子区域提取长度为8的方向直方图特征,排列起来形成128维特征向量。

为什么速度会提升呢?这里要明白一点,DoG算子分开两步其实是先高斯平滑再差分。

  • 使用box filters相对于高斯滤波,再辅助以积分图速度肯定提升不少。

  • Hessian矩阵的计算一般而言还是挺麻烦的,但这里可以使用积分图计算,无论尺度是多少都可以使用几个数的加减完成,速度很快。

  • 确定关键点方向时使用haar特征同样可以利用积分图,简单快速。

  • 特征描述子使用64维取代128维特征降低了后续处理的数据规模

接下来就来一步步分析surf特征吧

Fast-Hessian Detector 尺度空间生成

这一步其实相当于LoG算子。

在LoG中首先使用高斯平滑,然后对平滑后的图形进行Laplace获得二阶梯度特征。

而Fast-Hessian Detector则是首先使用box filter滤波,然后使用Hessian矩阵表征二阶梯度。

高斯二阶梯度到近似的二阶梯度算子如下图

1474701327495.jpg

从左到右分别表示在y方向LoG算子(),xy方向的LoG算子,y方向近似的LoG算子,xy方向近似的LoG算子

Hessian矩阵能够刻画二维曲面上点的不同方向变化剧烈程度,这里可以参见角点检测,只有当Hessian矩阵的两个特征值均远大于0时才认为该点是角点。行列式是特征值的乘积。

Hessian矩阵的计算

那么使用上图的类似算子,就可以表示成

但是近似毕竟是近似,这里近似一点,那里近似一点,累积的方差就大了,所以在计算hessian矩阵行列式时进行了修正

1.2是LoG的尺度,9是box filter的边长,自己可以算一算

于是

其中D是近似的Hessian矩阵。

这个式子是怎么来的呢?很难理解对不对,我们来推一推,目的是要

,于是

是不是发现问题了,在上面算0.9时我们替换成时仍然成立,所以就得到了计算行列式的近似式。

论文中指出surf初始size是,这么大区域平滑的效果等同于尺度为的高斯平滑。

同样的surf中也会建塔,但是和sift不同的是,sift在尺度增大的同时,不断对图像下采样,而surf在建塔的时候每层图像大小不变,只是对模板的尺度不断增大,相当于一个上采样的过程。

1474704408299.jpg

论文中第一塔中size分别为,而以后每塔中size边长差距逐塔翻倍。

如下图

1474705392249.jpg

size大小和对应LoG尺度可以如下换算

尺度空间生成之后就开始进行定位关键点了。

关键点定位

这里和LoG,DoG相同,都是在生成尺度空间后,找在三维上找极值点。

1474706156407.jpg

这里和DoG不同的是不用剔除边缘导致的极值点了,因为Hessian矩阵的行列式就已经考虑到边缘的问题了,而DoG计算只是把不同方向变化趋势给出来,后续还需要使用Hessian矩阵的特征值剔除边缘产生的影响。

在定位关键点时,要使用3维线性插值的方法得到亚像素级的坐标位置。

Scale space interpolation is especially important in our case, as the difference in scale between the first layers of every octave is relatively large.

这样关键点也找到了,下一步为了旋转不变性就该确定关键点方向了

关键点方向

不像sift中依靠梯度方向直方图确定主方向,Surf首先将周围`!$6s$的圆形区域分成6个扇形区间,s是对应的尺度,和size的换算方法,上文给出了。然后在每个扇形区域使用提取x方向和y方向的Haar小波特征(Haar小波的边长为4s),将该区域每个样本点这两个响应的高斯加权和作为该区域的方向,最后扫面了整个圆形区域,选择最大方向就是该关键点的方向。

使用的haar小波算子.jpg

分区域统计方向.jpg

ok,接下来就该描述关键点了

surf特征描述子

和sift类似,这时候为了保持旋转不变性,当然要将关键点的方向旋转一致之后再统计特征。

统计特征时,再该关键点周围选取的区域,划分成的子区域,在每个子区域内使用x方向,y方向的的haar小波特征算子提取haar小波特征,然后使用提取结果统计四个值作为该子区域的特征,那么一个关键点就可以使用16个子区域的特征联合表示,即64维向量。

子区域特征提取.jpg

部分实验结果

关键点检测

1474708745838.jpg

匹配结果图,这两幅图中相似的要素其实蛮多的,这使匹配的效果并不理想

1474708128266.jpg

图像的配准

1474708804017.jpg

1474708821848.jpg

参考文献

1. tornadomeet,特征点检测学习_2(surf算法),博客园,2012,8

2. Speeded up robust features(wiki百科)

Surf特征提取分析的更多相关文章

  1. SIFT特征提取分析

    SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J] ...

  2. [转]SIFT特征提取分析

    SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points) ...

  3. OpenCV Using Python——基于SURF特征提取和金字塔LK光流法的单目视觉三维重建 (光流、场景流)

    https://blog.csdn.net/shadow_guo/article/details/44312691 基于SURF特征提取和金字塔LK光流法的单目视觉三维重建 1. 单目视觉三维重建问题 ...

  4. 第十三节、SURF特征提取算法

    上一节我们已经介绍了SIFT算法,SIFT算法对旋转.尺度缩放.亮度变化等保持不变性,对视角变换.仿射变化.噪声也保持一定程度的稳定性,是一种非常优秀的局部特征描述算法.但是其实时性相对不高. SUR ...

  5. HOG特征提取分析(转)

    背景引言 方向梯度直方图(Histogram of Oriented Gradient,HOG)是用于在计算机视觉和图像处理领域,目标检测的特征描述子.该项技术是用来计算图像局部出现的方向梯度次数或信 ...

  6. OpenCV245之SURF源代码分析

    一.fastHessianDetector函数分析 (1)參数 const Mat& sum                积分图片 const Mat& mask_sum vecto ...

  7. SIFT特征提取分析(转载)

    转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform ...

  8. 图像局部显著性—点特征(SURF)

    1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述):参考描述:图像特征点描述. 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文. SURF对SI ...

  9. python opencv3 特征提取与描述 DoG SIFT hessian surf

    git:https://github.com/linyi0604/Computer-Vision DoG和SIFT特征提取与描述 # coding:utf-8 import cv2 # 读取图片 im ...

随机推荐

  1. ASP.NET Global 全局事件处理

    添加Global文件,名字不要改 Global类说明: using System; using System.Collections.Generic; using System.IO; using S ...

  2. python中的时间处理函数

    Python提供了多个内置模块用于操作日期时间,像calendar,time,datetime.time模块我在之前的文章已经有所介绍,它提供 的接口与C标准库time.h基本一致.相比于time模块 ...

  3. JAVA中读取xls数据方法介绍

    用例编号(UI-0001) 用例名称({验证页面跳转|验证元素文本}-简要明确表述) 验证类型 是否执行 初始URL 初始元素xpath 目标元素xpath 目标元素属性 期望结果 UI-0001 验 ...

  4. windows  远程桌面命令 mstsc

    win+R------>mstsc: 弹出: 目标机必开远程

  5. Android源码-学习随笔

    在线代码网站1:http://grepcode.com/project/repository.grepcode.com/java/ext/com.google.android/android/ 书籍: ...

  6. 【PHP构造方法和析构方法的使用】

    构造方法:__construct,析构方法:__destruct 代码示例: <?php class Person { public $name; public $age; public fun ...

  7. OCJP(1Z0-851) 模拟题分析(二)over

    Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...

  8. 命令行登陆Oracle(包括远程登陆)

    本方法适用于在cmd命令行窗口以及pl/sql登陆Oracle下登录本机或者远程Oracle. 1.首先保证在当前主机上设置了ORACLE_HOME环境变量:     例如:ORACLE_HOME=D ...

  9. go-martini 简单分析之二

    martini.go 对路由采用正则表达式处理,最终转化成正则表达式. 添加route对应的调用栈 按照生成,验证,添加的步骤 route := newRoute(method, pattern, h ...

  10. JavaScript - call(this)

    为什么使用call(this), 而不是直接使用(function(){})(); "use strict" function Foo() { (function() { cons ...