UVA 393
Description
You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x=0,x=10, y=0, and y=10. The initial
and final points of the path are always (0,5) and (10,5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length.

Input
The input data for the illustrated chamber would appear as follows.
2
4 2 7 8 9
7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0<x<10), and the
remaining four are the y coordinates of the ends of the doorways in that wall. The xcoordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at
least one such set of data. The end of the data comes when the number of walls is -1.
Output
The output file should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places
past the decimal point. The line should contain no blanks.
Sample Input
1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1
Sample Output
10.00
10.06
大意:在一个(10*10)平面内,求出发点(0,5)到终点(10,5) 的最短距离。
主要是用到了叉积判断线段是否相交,加上构图求最短路。
网上摘下来的代码,手打代码能力真的非常弱——老师为何丧心病狂叫一个提高一等都不稳的人做计算几何!!!虽然这个题目不难。。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iomanip>
using namespace std;
const double maxdist=0x7FFFFFFF;
int wall_num;
int edge_num;
int point_num;
double precision=0.00000001;//用来控制判断精度
double dist[100];
double point_dist[100][100];
struct edge_node{
double x1,x2,y1,y2;
}edge[80];
struct point_node{
double x,y;
}point[100];
/*
*在边的集合里添加边
*在点的集合里添加点
*/
void add_edge(double x1,double y1,double x2,double y2){
edge[edge_num].x1=x1;
edge[edge_num].x2=x2;
edge[edge_num].y1=y1;
edge[edge_num].y2=y2;
++edge_num;
}
void add_point(double x,double y){
point[point_num].x=x;
point[point_num].y=y;
point_num++;
}
/*
*使用dijkstra求两点之间
*/
void dijkstra(){
for (int i=1;i<point_num;i++)
dist[i]=maxdist;
bool reach[100];
memset(reach,true,sizeof(reach));
for (int i=1;i<=point_num;i++){
int pos;
double value=maxdist;
for (int j=0;j<point_num;j++)
if (dist[j]<value && reach[j]){
value=dist[j];
pos=j;
}
reach[pos]=false;
for (int j=0;j<point_num;j++)
if (reach[j] &&
dist[pos]+point_dist[pos][j]<dist[j]){
dist[j]=dist[pos]+point_dist[pos][j];
}
}
}
/*
*以下一连串子程序用叉积来判断两条线段是否相交
*/
double det(double x1,double y1,double x2,double y2){
return x1*y2-x2*y1;
}
double cross(point_node a,point_node b,point_node c){
return det(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
}
int cmp(double d){
if (fabs(d)<precision)
return 0;
return (d>0)?1:-1;
}
bool segment_cross_simple(point_node a,point_node b,point_node c,point_node d){
if (((cmp(cross(a,c,d))^cmp(cross(b,c,d)))==-2)&&
((cmp(cross(c,a,b))^cmp(cross(d,a,b)))==-2))
return true;
else
return false;
}
/*
*解决过程
*/
void solve(){
/*
*初始化过程
*/
memset(edge,0,sizeof(edge));
memset(point,0,sizeof(point));
memset(dist,0,sizeof(dist));
memset(point_dist,0,sizeof(point_dist));
//点集和边集清零
edge_num=0;
point_num=0;
add_point(0,5);
add_point(10,5);
//增加起点和终点
for (int i=1;i<=wall_num;i++){
double x,y1,y2,y3,y4;
cin >> x >> y1 >> y2 >> y3 >> y4;
//输入每个墙,并添加墙所对应的边
add_edge(x,0,x,y1);
add_edge(x,y2,x,y3);
add_edge(x,y4,x,10);
//添加墙所对应的新增顶点
add_point(x,y1);
add_point(x,y2);
add_point(x,y3);
add_point(x,y4);
}
for (int i=0;i<point_num;i++)
for (int j=0;j<point_num;j++)//枚举任意两个点
if (i!=j){//如果他们不是同一个点
bool link=true;
for (int k=0;k<edge_num;k++){
point_node lv,lv2;
lv.x=edge[k].x1;lv.y=edge[k].y1;
lv2.x=edge[k].x2;lv2.y=edge[k].y2;
if (segment_cross_simple(point[i],point[j],lv,lv2))
link=false;
}
if (link)
point_dist[i][j]=sqrt(pow(point[i].x-point[j].x,2)+
pow(point[i].y-point[j].y,2));
else
point_dist[i][j]=maxdist;
}
//对于任意两个顶点求他们之间的路径
dijkstra();
//求出源点开始的dijkstra
cout << setiosflags(ios::fixed)
<< setprecision(2)
<< dist[1] << endl;
}
/*
*主过程
*/
int main(){
cin >> wall_num;
while (wall_num!=-1){
solve();
cin >> wall_num;
}
}
UVA 393的更多相关文章
- Fast Matrix Operations(UVA)11992
UVA 11992 - Fast Matrix Operations 给定一个r*c(r<=20,r*c<=1e6)的矩阵,其元素都是0,现在对其子矩阵进行操作. 1 x1 y1 x2 y ...
- uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- UVA 11404 Palindromic Subsequence[DP LCS 打印]
UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...
- UVA&&POJ离散概率与数学期望入门练习[4]
POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...
- UVA计数方法练习[3]
UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...
- UVA数学入门训练Round1[6]
UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...
- UVA - 1625 Color Length[序列DP 代价计算技巧]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
随机推荐
- RxJava学习入门
RxJava是什么 一个词:异步. RxJava 在 GitHub 主页上的自我介绍是 "a library for composing asynchronous and event-bas ...
- jq 全选和反选以及判断那条被选中
<body><div><input type="checkbox" id="a" />全选</div><d ...
- 对Java内存模型即JMM的理解
类似物理上的计算机系统,Java虚拟机规范中也定义了一种Java内存模型,即Java Memory Model(JMM),来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能 ...
- 设计模式学习之模板方法模式(TemplateMethod,行为型模式)(9)
一.什么是模板方法模式 Template Method模式也叫模板方法模式,是行为模式之一,它把具有特定步骤算法中的某些必要的处理委让给抽象方法,通过子类继承对抽象方法的不同实现改变整个算法的行为. ...
- elasticsearch入门
到 https://download.elastic.co/elasticsearch/elasticsearch/elasticsearch-1.6.0.zip 下载最新包: 启动: ./elast ...
- VS2015 Preview Secondary Installer 离线安装
VS2015 Preview Secondary Installer 离线安装 天朝的原因orz, 装过vs2015 preview 的人都懂的,第二阶段安装会失败.假公济私的研究了下VS2015,摸 ...
- windows7下安装php的imagick和imagemagick扩展教程
这篇文章主要介绍了windows7下安装php的imagick和imagemagick扩展教程,同样也适应XP操作系统,Win8下就没测试过了,需要的朋友可以参考下 最近的PHP项目中,需要用到切图和 ...
- Build Instructions (Windows) – The Chromium Projects
转自:http://121.199.54.6/wordpress/?p=1156 原始地址:http://www.chromium.org/developers/how-tos/build-instr ...
- PowerDesigner(PowerDesigner15.1.0.2850)下载、安装以及破解
转自:http://www.cnblogs.com/Fonkie/articles/1600662.html 一.先安装PowerDesigner15(PowerDesigner15.1.0.2850 ...
- Intent传递对象的两种方法(Serializable,Parcelable) (转)
今天讲一下Android中Intent中如何传递对象,就我目前所知道的有两种方法,一种是Bundle.putSerializable(Key,Object);另一种是Bundle.putParcela ...