course link: https://class.coursera.org/fmri1-001

Part 1 

❤ Three fundmental goals in fMRI:

localization (brain mapping approach: task comparison, brain-behavior correlation, information-based mapping);

connectivity (functional connectivity (seed-based), effectivity connectivity (DCM), multivariate connectivity (ICA, PCA, graph theory));

prediction (use the brain activities to predict something such as behavior)

❤ fMRI data structure:

TR: temporal resolution

Sturctural images:T1, WM<GM<CSF (longitudinal relaxation)

Functional images: T2* images

T2: teanscerse reliaxation

❤ fmri data structure

Field of view (FOV): to what extent of view in each direction we can see the brain

Slice thickness

eg. If the FOC is 192 mm, matrix size is 64 mm (the area of each slice), the slice thickness is 3 mm, then voxel size: 192mm (FOV)/64 (matrix size)*3 (slice thickness) = 3*3*3 mm voxel size (the last 3 means slice thickness)

hierarchy: Experiment-subjects-session-run-volume-slice-voxel

❤ Statistical map: the colors indicate reliable, non-zero effects

❤ Reverse inference: observed brain actives -> the feeling

One fallacy: if P->Q, Q, therefore P (true only if P is the only factor leads to Q)

❤ For regional brain activation to have high positive predictive value:

- It must respond consistently to the task/state (high sentivitivity);

- It must respond only to the task/state (high specificity).

Part 2

course link: https://class.coursera.org/fmri1-001

❤ T1 time

WM = 600;

GM = 1000;

CSF = 3000.

❤ Terms relating to time

TR: how often we excite the nuclei;

TE: how soon after exciation we begin data collection.

❤ K-space

K-space is frequency space.

Doing inverse Fourier transformation on points in k-space could reconstruct brain image we need.

Each individual point in image space depends on all points in k-space (in other words, the value of the points in k-space tells us its relative contribution in reconstruct the brain image).

"Low spatial frequencies represent parts of the object that change in a spatially slow manner (Contrast); high spatial frequencies represent small structures whose size is on the same order as the voxel size (Tissue boundaries)." -- the center points in the k-space contribute most of the brain image, while the outskirt part mostly contribute to the sketch of the brain.

Part 3

❤ BOLD signal

- Oxyhemoglobin is diamagnetic; while deoxyhemoglobin is paramagnetic (distort the magetic fields, and suppress the MR signal - when deoxyhemoglobin decrease, then the T2*-weighted signal increase).

- Bold signal often corresponds relatively closely to the local field potential (LFP - often reflect the integrated post-synaptic activiy across a group of neurons) - the electrical field potentional surrounding a group of cells.

- Bold signal does not always reflect changes in neuron activity.

❤ Basic quality control

- SNR (signal-to-noise ratio): a basic measure of effect size.

- CNR (contrast-to-noise ratio)

The two measurements can be calculated at both spatial and temporal level. Note that for temporally detrended data, the temporal SNR (or functional SNR) is also called Signal-to-Fluctuation-Noise Ratio (SFNR). Temporal CNR is also signal sentivity.

- Bold response is non-linear, which may cause nonlinear 'saturation'. This effect can be reduced by increasing the intervals between two stimuli.

❤ fMRI artefacts and non-signal-related noise

- Drift (low frequency noise)

Slow changes in voxel intersity over time - scanner instabilities and aliased physiological noise. Should be taken care about when pre-process images and conduct statistical analysis.

To aviod drift the experiment design should be fast.

-Motion

Should be taken care about when pre-process images and conduct statistical analysis. Only motion correction in pre-processing steps is not enough.

- Respiration and heart rate

TR that is too low may give rise to aliasing.

Part 6 - GLM

- Statistical analysis under certain circumstances:

- Pay attention that the first colume of design matrix should be 1, in correspondance to β0;

- Build a certian GLM model: assume a LTI (linear time invariant) system (because HRF is fixed and will not change with time), and the predictors (Xs) should be the neural response function convolved with HRF;

- Mass univariate analysis: assume each voxel in the brain responding independently, and build a GLM for them each for analysis;

- Contrast: vector of weights, used to perform statistical analysis (c'*β = a, a is h in statistical analysis). Usually sum(c) should equal to 0 for the convenience to conduct statistical analysis of H0 = 0.

- Using one sigle shaped curve to fit the HRF has imperfictions: actually HRF varies across brain regions and experiment paradigm. Three ways to model HRF:

❤ Parameters estimation (actually we don't have to care about these the details)

- Based on the assumption below:

The following computation is based on two kind of hypothesis: ε is normally distributed at the mean zero and is IID (Independent and identically distributed) (then the variance-covariance matrix V can be considered as I(σ^2)) or not.

Then we have:

- Specific computation equations for T and F-test in SPM:

- Interesting angles about GLM

.. When fitting the GLM model, we are actually calculating in a p-dimention hyperplane space (p is the number of independent variables, namely the columns of the design matrix (-1? for the baseline));

.. As the figure shows below, the fitting of the dependent variable y' is actually the projection of y onto the plane that independent variable matrix (design matrix) X defines.

Part 7 - Multiple comparison correction

- voxel-based correction:

FWE (Bonferroni correction & Random Field Theory (usually gaussian random field) & Permutation) - too stringent;

FDR;

- cluster-level inference (correction): sensitivity but bad spacial specifity;

- threshold-free cluster enhancement (TFCE).

Notes: Principles of fMRI 1 (Coursera)的更多相关文章

  1. fMRI在认知心理学上的研究

    参考:Principles of fMRI 1 问题: 1. fMRI能做什么不能做什么? 第一周:fMRI简介,data acquisition and reconstruction 大致分为两类: ...

  2. Notes of Principles of Parallel Programming - TODO

    0.1 TopicNotes of Lin C., Snyder L.. Principles of Parallel Programming. Beijing: China Machine Pres ...

  3. Coursera公开课Functional Programming Principles in Scala习题解答:Week 2

    引言 OK.时间非常快又过去了一周.第一周有五一假期所以感觉时间绰绰有余,这周中间没有假期仅仅能靠晚上加周末的时间来消化,事实上还是有点紧张呢! 后来发现每堂课的视频还有相应的课件(Slide).字幕 ...

  4. Coursera 机器学习Course Wiki Lecture Notes

    https://share.coursera.org/wiki/index.php/ML:Main 包含了每周的Lecture Notes,以便复习回顾的时候使用.

  5. Coursera, Machine Learning, notes

      Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...

  6. Coursera台大机器学习课程笔记15 -- Three Learning Principles

    这节课是最后一节,讲的是做机器学习的三个原则. 第一个是Occan's razor,即越简单越好.接着解释了什么是简单的hypothesis,什么是简单的model.关于为什么越简单越好,林老师从大致 ...

  7. Notes of Principles of Parallel Programming: Peril-L Notation - TODO

    Content 1 syntax and semantic 2 example set 1 syntax and semantic 1.1 extending C Peril-L notation s ...

  8. C++基本要点复习--------coursera程序设计实习(PKU)的lecture notes

    因为一些特性复杂,很多时候也用不到一些特性,所以忘记了,算是随笔,也当作一个临时查找的手册.没有什么顺序,很杂. 1.构造函数通过函数重载的机制可以有多个(不同的构造函数,参数个数,或者参数类型不同. ...

  9. Laterality issue on fMRI image

    The laterality issue: different software will interpret fMRI images in different way (mainly refer t ...

随机推荐

  1. iOS 开发之路(使用WKWebView加载Html5) 四

    基于Swift 3 . Xcode 8 . iOS 10 下的WKWebView的使用. 首先是WKWebView的基本用法: var wk:WKWebView! var progBar:UIProg ...

  2. 详解 Spotlight on MySQL监控MySQL服务器

    前一章详解了Spotlight on Unix 监控Linux服务器 ,今天再来看看Spotlight on MySQL怎么监控MySQL服务器. 注:http://www.cnblogs.com/J ...

  3. JSON 数据使用方法

    当同一个模板需要替换不同的数据显示的时候,如果数据量大点,用json很方便. json对象: var JSONObject= { "name":"Bill Gates&q ...

  4. 如何利用Pre.im分发iOS测试包

    大众创新万众创业,在移动互联网的风口,移动APP开发与测试发展方兴未艾,受到了越来越多的重视.相较 iOS,Android 的开发环境更加开放.Android 开发者要测试应用时,只需发个 APK 安 ...

  5. Tableau——BI software

    Tableau 8权威指南 (权威的数据可视化实战手册,中国传媒大学教授沈浩.北京大学研究员袁晓如 联袂推荐) 触手可及的大数据分析工具——Tableau案例集 写给专业数据分析师的丛书,无门槛的大数 ...

  6. 清理DBA_DATAPUMP_JOBS中的孤立数据泵作业

    今天在重构数据库时(将表空间中的表.索引转移到其它表空间)时,发现有两个奇怪的对象SYS_EXPORT_FULL_01.SYS_EXPORT_FULL_02搜索了一下,发现这个可能是EXPDP导出异常 ...

  7. Zookeeper 服务注册和发现

    Zookeeper 分布式服务框架是 Apache Hadoop 的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务.状态同步服务.集群管理.分布式应用配置项的管理 ...

  8. c# bass入门学习

    据说bass挺好用的,所以又搞了个音乐播放器 这是参考了别人的bass教学结合自己的理解写的bass操作类 public class BassHelper { private static BassH ...

  9. MongoDB Sharding、库、collection设计学习汇总

    sharding设计须考虑的几个因素 Sharding Key的选择           在片键的选择上,最好是能够在字段中选择混合型的片键,大范围的递增健.和随机分布的健组合,如按月份递增.按用户名 ...

  10. android开发环境搭建日记和嵌入式Android开发环境初探

    非常感谢博客园的各位,按照你们的博文,还有利用百度和谷歌逐渐建立了android的开发环境,只是给自己备份参考查看,看过的人可以忽略这篇文章. 本文章大部分参考了:http://www.cnblogs ...