hdu4888 Redraw Beautiful Drawings 最大流+判环
Redraw Beautiful DrawingsTime Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 2007 Accepted Submission(s): 447 Problem Description
Alice and Bob are playing together. Alice is crazy about art and she has visited many museums around the world. She has a good memory and she can remember all drawings she has seen.
Today Alice designs a game using these drawings in her memory. First, she matches K+1 colors appears in the picture to K+1 different integers(from 0 to K). After that, she slices the drawing into grids and there are N rows and M columns. Each grid has an integer on it(from 0 to K) representing the color on the corresponding position in the original drawing. Alice wants to share the wonderful drawings with Bob and she tells Bob the size of the drawing, the number of different colors, and the sum of integers on each row and each column. Bob has to redraw the drawing with Alice's information. Unfortunately, somtimes, the information Alice offers is wrong because of Alice's poor math. And sometimes, Bob can work out multiple different drawings using the information Alice provides. Bob gets confused and he needs your help. You have to tell Bob if Alice's information is right and if her information is right you should also tell Bob whether he can get a unique drawing. Input
The input contains mutiple testcases.
For each testcase, the first line contains three integers N(1 ≤ N ≤ 400) , M(1 ≤ M ≤ 400) and K(1 ≤ K ≤ 40). N integers are given in the second line representing the sum of N rows. M integers are given in the third line representing the sum of M columns. The input is terminated by EOF. Output
For each testcase, if there is no solution for Bob, output "Impossible" in one line(without the quotation mark); if there is only one solution for Bob, output "Unique" in one line(without the quotation mark) and output an N * M matrix in the following N lines representing Bob's unique solution; if there are many ways for Bob to redraw the drawing, output "Not Unique" in one line(without the quotation mark).
Sample Input
2 2 4
4 2 4 2 4 2 2 2 2 5 0 5 4 1 4 3 9 1 2 3 3 Sample Output
Not Unique
Impossible Unique 1 2 3 3 Author
Fudan University
Source
Recommend
|
大意:n*m的矩阵,每个格子可以是0~k,给出各行的和和各列的和,求格子数字唯一方案,或判断无解或不唯一。
题解:
最大流,每行一个点,每列一个点,起点到每行的点连流量等于这行的和的边,每列的点连流量等于这列的和的边到终点,每行的点连到每列的点流量为K的点。所有行的和不等于所有列的和 或 最大流不等于所有行的和 则无解。有解的话再判有没有环,有环说明多解,可以dfs判环。
我这题卡了好久,判环的地方怒有问题,后来我看别人代码,只用从1~nr(行数)作为起始位置就能判完,也就是从行的节点开始,如果所有节点都开始一发的话会超时……我觉得再开点东西来记忆的话应该可以更快点,日后再说吧。
日后:
有了更好的删边判环方法,具体见一道几乎相同的题的题解:http://www.cnblogs.com/yuiffy/p/3929369.html
因为要删边判环,边被删了不好输出结果,所以先记录结果再删就好啦。速度快得飞起来。
(我的网络流是n个点,下标1~n的ISAP+GAP+CUR,怕不怕)
日前代码:
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
using namespace std;
#define ll __int64
#define usint unsigned int
#define RE freopen("1002.in","r",stdin)
#define WE freopen("1002my.out","w",stdout) int ans;
int r[],co[];
int k,nr,nc;
int sumr,sumc;
const int maxn=;//点数
const int maxm=;//边数
const int inf=0x7fffffff;//MAXINT
struct vnode {
int v,next;
int cap;
};
int cnt,head[maxn];
int h[maxn],g[maxn],d[maxn];//g[i]为标号为i的结点个数,h[i]为i结点的标号,d[]当前弧优化,记录当前弧
bool found;
int n,m,st,ed;//n个点m条边
int augc,flow;//augc为增广路容量,flow为最大流
vnode e[maxm]; void add(int x,int y,int z) {
e[cnt].v=y;
e[cnt].cap=z;
e[cnt].next=head[x];
head[x]=cnt;
cnt++;
// if(cnt>=maxm|| x>=maxn||y>=maxn)
// {
// //cout<<x<<','<<y<<','<<z<<','<<cnt<<','<<head[x]<<','<<head[y]<<endl;
// getchar();
// }
e[cnt].v=x;
e[cnt].cap=;
e[cnt].next=head[y];
head[y]=cnt;
cnt++; } bool walked[maxn];
bool dfs(int x,int preE) {
//cout<<x<<',';
for (int i=head[x]; i!=-; i=e[i].next)//寻找容许边
{
if(i==(preE^))continue;
if (e[i].cap>) { //如果残留容量大于0,如果不是直接回头
if(walked[e[i].v])return true;
walked[e[i].v]=true;
if(dfs(e[i].v,i)) return true;
walked[e[i].v]=false;
}
}
//printf("(%d)out ",x);
//getchar();
return false;
} void aug(const int &m) {
int i,mini,minh=n-;
int augco=augc;
if (m==ed) { //如果当前结点为汇点
found=true;
flow+=augc; //增加流量
return;
}
for (i=d[m]; i!=-; i=e[i].next) { //寻找容许边
//printf("m=%d,i=%d,e[i].v=%d,e[i].cap=%d,e[i].next=%d\n",m,i,e[i].v,e[i].cap,e[i].next);
//getchar();
if (e[i].cap && h[e[i].v]+==h[m]) { //如果残留容量大于0,如果是容许边
if (e[i].cap < augc) augc=e[i].cap;//如果容许边流量小于当前增广路流量 则更新增广路流量
d[m]=i; //把i定为当前弧
aug(e[i].v); //递归
if (h[st]>=n) return; //GAP 如果源点距离标号大于n 则停止算法
if (found) break; //如果找到汇点 则退出寻找
augc=augco;//没找到就还原当前的流
}
}
if (!found) { //重标号
for (i=head[m]; i!=-; i=e[i].next) //找那个标号,这里不能用d[m]开始,不然会蛋疼
if (e[i].cap && h[e[i].v]<minh) {
minh=h[e[i].v];
mini=i;
}
g[h[m]]--; //GAP 距离为
if (!g[h[m]]) h[st]=n; //GAP
h[m]=minh+;
d[m]=mini;
g[h[m]]++; //GAP
} else {
//修改残量
e[i].cap-=augc;
e[i^].cap+=augc;
}
} void farm() {
int i,j,x,y,z;
memset(head,-,sizeof(head));
cnt=;
n=nc+nr+;
st=n-;
ed=n;
for(i=nc; i>=; i--)
add(st,i,co[i-]);
for(i=nr; i>=; i--)
add(nc+i,ed,r[i-]);
for(i=nc; i>=; i--)
for(j=nr; j>=; j--)
add(i,nc+j,k);
//printf("cnt=%d\n",cnt);
memset(h,,sizeof(h));
memset(g,,sizeof(g));
g[]=n;
flow=;
//printf("st=%d,head[st]=%d\n",st,head[st]);
for(i=; i<=n; i++)
d[i]=head[i];//当前弧初始化
while(h[st]<n) {
augc=inf;//初始化增广路容量为正无穷大
found=false;
aug(st);//从源点开始找
}
if(flow!=sumr) {ans=;return;}
//printf("%d\n",flow);
memset(walked,false,sizeof(walked));
for(i=;i<=nr;i++) ///Why is nr?
{
//printf("start dfs(%d)\n",i);
if(dfs(i,-)) {ans=;return;}
}
ans=;
//printf("%d\n",flow);
} int main() {
//RE;
//WE;
int i,j;
while(scanf("%d%d%d",&nr,&nc,&k)!=EOF) {
sumr=;sumc=;
for(i=; i<nr; i++)
{
scanf("%d",&r[i]);
sumr+=r[i];
}
for(i=; i<nc; i++)
{
scanf("%d",&co[i]);
sumc+=co[i];
}
ans=;
if(sumr==sumc)farm();
if(ans==) printf("Impossible\n");
else if(ans!=) {
printf("Not Unique\n");
// for(i=1; i<=nr; i++) {
// for(j=head[nc+i]; j!=-1; j=e[j].next)
// {
// if(e[j].v==ed)continue;
// printf("%d ",e[j].cap);
// }
// puts("");
// }
} else {
printf("Unique\n");
for(i=; i<=nr; i++) {
for(j=head[nc+i]; j!=-; j=e[j].next) {
if(e[j].v==ed)continue;
printf("%d",e[j].cap);
int thenext=e[j].next;
while(thenext!=-&&e[thenext].v==ed)thenext=e[thenext].next;
if(thenext!=-)putchar(' ');
}
puts("");
}
}
}
//cout<<"end";
return ;
}
日后代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) prllf("%d\n",x);
#define RE freopen("1002.in","r",stdin)
#define WE freopen("1002testout.txt","w",stdout)
#define mp make_pair
#define pb push_back int ans;
int r[],co[];
int k,nr,nc;
int sumr,sumc;
const int maxn=;//点数
const int maxm=;//边数
const int inf=0x7fffffff;//MAXINT
struct vnode {
int v,next;
int cap;
};
int cnt,head[maxn];
int h[maxn],g[maxn],d[maxn];//g[i]为标号为i的结点个数,h[i]为i结点的标号,d[]当前弧优化,记录当前弧
bool found;
int n,m,st,ed;//n个点m条边
int augc,flow;//augc为增广路容量,flow为最大流
vnode e[maxm]; int an[maxn][maxn]; void add(int x,int y,int z) {
e[cnt].v=y;
e[cnt].cap=z;
e[cnt].next=head[x];
head[x]=cnt;
cnt++;
// if(cnt>=maxm|| x>=maxn||y>=maxn)
// {
// //cout<<x<<','<<y<<','<<z<<','<<cnt<<','<<head[x]<<','<<head[y]<<endl;
// getchar();
// }
e[cnt].v=x; e[cnt].cap=;
e[cnt].next=head[y];
head[y]=cnt;
cnt++; } bool walked[maxn];
bool dfs(const int &x,const int &prex) {///深搜判环
int biu=-;
walked[x]=true;
for (int i=head[x]; i!=-; i=e[i].next) {
if(e[i].v==prex) {
biu=i;
continue;
}
if (e[i].cap>) {
if(walked[e[i].v]) return true;
if(dfs(e[i].v,x)) return true;
}
if(biu==-) head[x]=e[i].next;///删边,因为走了这条边却没发现环
else e[biu].next=e[i].next;
biu=i;
}
walked[x]=false;
return false;
} void aug(const int &m) {
int i,mini,minh=n-;
int augco=augc;
if (m==ed) { //如果当前结点为汇点
found=true;
flow+=augc; //增加流量
return;
}
for (i=d[m]; i!=-; i=e[i].next) { //寻找容许边
//printf("m=%d,i=%d,e[i].v=%d,e[i].cap=%d,e[i].next=%d\n",m,i,e[i].v,e[i].cap,e[i].next);
//getchar();
if (e[i].cap && h[e[i].v]+==h[m]) { //如果残留容量大于0,如果是容许边
if (e[i].cap < augc) augc=e[i].cap;//如果容许边流量小于当前增广路流量 则更新增广路流量
d[m]=i; //把i定为当前弧
aug(e[i].v); //递归
if (h[st]>=n) return; //GAP 如果源点距离标号大于n 则停止算法
if (found) break; //如果找到汇点 则退出寻找
augc=augco;//没找到就还原当前的流
}
}
if (!found) { //重标号
for (i=head[m]; i!=-; i=e[i].next) //找那个标号,这里不能用d[m]开始,不然会蛋疼
if (e[i].cap && h[e[i].v]<minh) {
minh=h[e[i].v];
mini=i;
}
g[h[m]]--; //GAP 距离为
if (!g[h[m]]) h[st]=n; //GAP
h[m]=minh+;
d[m]=mini;
g[h[m]]++; //GAP
} else {
//修改残量
e[i].cap-=augc;
e[i^].cap+=augc;
}
} void farm() {
int i,j,x,y,z;
memset(head,-,sizeof(head));
cnt=;
n=nc+nr+;
st=n-;
ed=n;
for(i=nc; i>=; i--)
add(st,i,co[i-]);
for(i=nr; i>=; i--)
add(nc+i,ed,r[i-]);
for(i=nc; i>=; i--)
for(j=nr; j>=; j--)
add(i,nc+j,k);
//printf("cnt=%d\n",cnt);
memset(h,,sizeof(h));
memset(g,,sizeof(g));
g[]=n;
flow=;
//printf("st=%d,head[st]=%d\n",st,head[st]);
for(i=; i<=n; i++)
d[i]=head[i];//当前弧初始化
while(h[st]<n) {
augc=inf;//初始化增广路容量为正无穷大
found=false;
aug(st);//从源点开始找
}
if(flow!=sumr) {
ans=;
return;
}
//printf("%d\n",flow);
for(i=; i<=nr; i++) {
int k=;
for(j=head[nc+i]; j!=-; j=e[j].next) {
if(e[j].v==ed)continue;
an[i][k++]=e[j].cap;
int thenext=e[j].next;
while(thenext!=-&&e[thenext].v==ed)thenext=e[thenext].next;
}
}
memset(walked,false,sizeof(walked));
for(i=nr; i>=; i--) { ///Why is nr?
//printf("start dfs(%d)\n",i);
if(dfs(i,-)) {
ans=;
return;
}
}
ans=;
//printf("%d\n",flow);
} int main() {
//RE;
//WE;
int i,j;
while(scanf("%d%d%d",&nr,&nc,&k)!=EOF) {
sumr=;
sumc=;
for(i=; i<nr; i++) {
scanf("%d",&r[i]);
sumr+=r[i];
}
for(i=; i<nc; i++) {
scanf("%d",&co[i]);
sumc+=co[i];
}
ans=;
if(sumr==sumc)farm();
if(ans==) printf("Impossible\n");
else if(ans!=) {
printf("Not Unique\n");
// for(i=1; i<=nr; i++) {
// for(j=head[nc+i]; j!=-1; j=e[j].next)
// {
// if(e[j].v==ed)continue;
// printf("%d ",e[j].cap);
// }
// puts("");
// }
} else {
printf("Unique\n");
for(i=; i<=nr; i++) {
if(nc>=)printf("%d",an[i][]);
for(j=; j<=nc; j++) {
printf(" %d",an[i][j]);
}
puts("");
}
}
}
//cout<<"end";
return ;
}
hdu4888 Redraw Beautiful Drawings 最大流+判环的更多相关文章
- HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)
Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- HDU4888 Redraw Beautiful Drawings(最大流唯一性判定:残量网络删边判环)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4888 Description Alice and Bob are playing toget ...
- hdu 4888 Redraw Beautiful Drawings(最大流,判环)
pid=4888">http://acm.hdu.edu.cn/showproblem.php?pid=4888 加入一个源点与汇点,建图例如以下: 1. 源点 -> 每一行相应 ...
- hdu4888 Redraw Beautiful Drawings(最大流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4888 题意:给一个矩阵没行的和和每列的和,问能否还原矩阵,如果可以还原解是否唯一,若唯一输出该矩阵. ...
- hdu 4888 Redraw Beautiful Drawings 最大流
好难好难,将行列当成X和Y,源汇点连接各自的X,Y集,容量为行列的和,相当于从源点流向每一行,然后分配流量给每一列,最后流入汇点,这样执意要推断最后是否满流,就知道有没有解,而解就是每一行流向每一列多 ...
- hdu4888 Redraw Beautiful Drawings
14更多学校的第二个问题 网络流量 分别以行,列作为结点建图 i行表示的结点到j列表示的结点的流量便是(i, j)的值 跑遍最大流 若满流了便是有解 推断是否unique 就是在残余网络 ...
- Redraw Beautiful Drawings(hdu4888)网络流+最大流
Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/O ...
- HDU Redraw Beautiful Drawings 推断最大流是否唯一解
点击打开链接 Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 ...
- 【HDU】4888 Redraw Beautiful Drawings 网络流【推断解是否唯一】
传送门:pid=4888">[HDU]4888 Redraw Beautiful Drawings 题目分析: 比赛的时候看出是个网络流,可是没有敲出来.各种反面样例推倒自己(究其原因 ...
随机推荐
- 【BZOJ-1552&3506】robotic sort&排序机械臂 Splay
1552: [Cerc2007]robotic sort Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 806 Solved: 329[Submit][ ...
- NAnt打包使用MSTest进行单元测试的配置
NAnt比较老的持续集成工具了,对于它的文章都停留在09年左右的,只有一些github上的老项目上可以很多的看见是使用这个进行集成的,估计这个当时老外用的非常多吧. 如题,NAnt如果使用单元测试,用 ...
- hdu 5035 概率题
直接推公式的题目了.... Refer:http://blog.csdn.net/u012139398/article/details/39458623 https://www.zybuluo.com ...
- Bzoj2683 简单题 [CDQ分治]
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 1071 Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...
- string字符串的一系列操作
IndexOf() 查找字串中指定字符或字串首次出现的位置,返首索引值,如: str1.IndexOf("字"): //查找“字”在str1中的索引值(位置) str1.Index ...
- MongoDB安装部署(一)
前言 MongoDB是一个由C++语言编写的基于分布式文件存储的数据库,是当前NoSQL数据库中比较热门的一种,旨在为Web应用提供可扩展的高性能数据存储解决方案. MongoDB 简介 MongoD ...
- JQuery 技巧积累与总结
1.获得select 元素选中的值 $('#WishlistSelect option:selected').val(); 2.设置按钮的disabled属性的实现代码 $('#button').at ...
- Untiy3D - 窗口界面2
Component 组件 Mesh:网格 Mesh Filter: 网格滤镜 Mesh Renderer 网格渲染器 Mesh Collider: 网格碰撞器.网格碰撞节点 Convex: 凸的.凸面 ...
- Tarjan_LCA
貌似求LCA使用倍增已经可以应付掉大多数需要LCA的题了.. 但是有些时候$O(MlogN)$的复杂度就不可接受了 Tarjan_LCA对于每个询问采用离线处理 总复杂度为$O(M+N)$ 这个复杂度 ...
- python 培训之Django
1.Install sudo apt-get install python-pip sudo pip install django==1.8 2. Create Project django- ...