matlab中的xcorr 自相关函数
转载自 http://blog.163.com/to_be_myself/blog/static/176060227201101762159227/
Matlab中用于计算自相关函数的指令是xcorr.比如矩阵A=[1 2 3];
xcorr(A)=3.0000 8.0000 14.0000 8.0000 3.0000
自相关函数是信号间隔的函数,间隔有正负间隔,所以n个长度的信号,有2n-1个自相关函数值,分别描述的是不同信号间隔的相似程度。
比如,上面的矩阵,最后得到5个结果,其中第三个是自己和自己相乘,最后相加的结果,值最大1*1+2*2+3*3=14。而第二个和第四个分别是间隔正负1的结果也就是1*2+2*3=8,2*1+3*2=8。第1个和第五个分别是间隔正负2,也就是1*3=3,3*1=3。
xcorr求出的结果仅仅是x(n)*x(n+m)并对其求和,并没有除以前面的N或者是N-|K|。不用这个函数也可以求
for k=0:1:p
t5=0;
for n=0:1:N-k-1
t5=t5+conj(x(n+1))*x(n+1+k);
end
Rxx(k+1)=t5/N;
end
也可以实现,其中N为序列长度此处并未求出全部的自相关序列,只求了间隔从0到p的。
我们令Rx=xcorr(x);
则Rxx(k+1)=Rx(N+k)/N得到。
下面是摘自一篇博文:
1. 首先说说自相关和互相关的概念。
这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号 x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度;互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效.
事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。
那么,如何在matlab中实现这两个相关并用图像显示出来呢?
dt=.1;
t=[0:dt:100];
x=cos(t);
[a,b]=xcorr(x,'unbiased');
plot(b*dt,a)
上面代码是求自相关函数并作图,对于互相关函数,稍微修改一下就可以了,即把
[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbiased');便可。
2. 实现过程:
在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码:
dt=.1;
t=[0:dt:100];
x=3*sin(t);
y=cos(3*t);
subplot(3,1,1);
plot(t,x);
subplot(3,1,2);
plot(t,y);
[a,b]=xcorr(x,y);
subplot(3,1,3);
plot(b*dt,a);
yy=cos(3*fliplr(t)); % or use: yy=fliplr(y);
z=conv(x,yy);
pause;
subplot(3,1,3);
plot(b*dt,z,'r');
即在xcorr中不使用scaling。
3. 其他相关问题:
1) 相关程度与相关函数的取值有什么联系?
相关系数只是一个比率,不是等单位量度,无什么单位名称,也不是相关的百分数,一般取小数点后两位来表示。相关系数的正负号只表示相关的方向,绝对值表示相关的程度。因为不是等单位的度量,因而不能说相关系数0.7是0.35两倍,只能说相关系数为0.7的二列变量相关程度比相关系数为0.35的二列变量相关程度更为密切和更高。也不能说相关系数从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。
对于相关系数的大小所表示的意义目前在统计学界尚不一致,但通常按下是这样认为的:
相关系数 相关程度
0.00-±0.30 微相关
±0.30-±0.50 实相关
±0.50-±0.80 显著相关
±0.80-±1.00 高度相关
matlab计算自相关函数autocorr和xcorr有什么不一样的?xcorr是没有将均值减掉做的相关,autocorr则是减掉了均值。
matlab中的xcorr 自相关函数的更多相关文章
- MATLAB中绘制质点轨迹动图并保存成GIF
工作需要在MATLAB中绘制质点轨迹并保存成GIF以便展示. 绘制质点轨迹动图可用comet和comet3命令,使用例子如下: t = 0:.01:2*pi;x = cos(2*t).*(cos(t) ...
- matlab 中 eps 的分析
eps(a)是|a|与大于|a|的最小的浮点数之间的距离,距离越小表示精度越高.默认a=1: 这里直接在matlab中输入:eps == eps(1)(true). 我们知道浮点数其实是离散的,有限的 ...
- matlab中patch函数的用法
http://blog.sina.com.cn/s/blog_707b64550100z1nz.html matlab中patch函数的用法——emily (2011-11-18 17:20:33) ...
- paper 121 :matlab中imresize函数
转自:http://www.cnblogs.com/rong86/p/3558344.html matlab中函数imresize简介: 函数功能:该函数用于对图像做缩放处理. 调用格式: B = i ...
- MATLAB中FFT的使用方法
MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...
- MATLAB中fft函数的正确使用方法
问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...
- Matlab中的一些小技巧
(转于它处,仅供参考) 1.. Ctrl+C 中断正在执行的操作 如果程序不小心进入死循环,或者计算时间太长,可以在命令窗口中使用Ctrl+c来中断.MATLAB这时可能正疲于应付,响应会有些滞后. ...
- Matlab中给figure添加图例(legend),标题(title)和颜色(color)
在Matlab绘图过程中,尤其是需要将多个图绘制在相同的坐标轴中时,通常需要将不同的曲线设置成为不同的颜色.此外,为了直观,还需要给这张图标增添标题和图例.这篇文章展示了在Matlab的绘图窗口(fi ...
- MATLAB中取整函数(fix, floor, ceil, round)的使用
MATLAB取整函数 1)fix(x) : 截尾取整. >> fix( [3.12 -3.12]) ans = 3 -3(2)floor(x):不超过x 的最大整数.(高斯取整) & ...
随机推荐
- C++杂谈(二)初识vector容器与迭代器
教科书中失踪的vector 很奇怪的一件事情,在当时学习C++的时候,老师并没有讲授容器的内容,当时参考的谭浩强老师的红皮C++也没有这个内容,不知为何.后来再学C++,发现容器是一个很重要的概念,在 ...
- 工作中常用的Linux命令:crontab命令
本文链接:http://www.cnblogs.com/MartinChentf/p/6060252.html (转载请注明出处) crontab是一个用来设置.删除或显示供守护进程cron执行的定时 ...
- 使用数据库sqlite3 C语言实现登陆注册的功能
//此代码为注册功能 void create_regtable() { int rc; //rc为返回值,判断函数是否执行成功 rc=0函数执行成功,rc !=0函数执行失败 sqlite3 *db; ...
- vsftpd 配置:chroot_local_user与chroot_list_enable详解
chroot_local_user,chroot_list_enable,chroot_list_file三个配置项的解释: chroot_local_user #是否将所有用户限制在主目录,YES为 ...
- vi/vim实用命令
查找 n是下一个,N是上一个 撤销和重做 u:撤销上一步的操作 ctrl+r:恢复上一步被撤销的操作 替换 :1,$ s/aaa/bbb/g
- plain framework 1 参考手册 入门指引之 代码风格
代码风格 介绍 介绍 框架自身采用了google的C++风格,作者也鼓励在你的应用中使用此风格,有关此风格你可以查阅相关资料了解.下面是一段plain framework中的代码,以便大家参考: 你可 ...
- stanford coursera 机器学习编程作业 exercise 3(使用神经网络 识别手写的阿拉伯数字(0-9))
本作业使用神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),请参考:http://www.cnblogs.com ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- HTML常用标签跟表格
<html> --开始标签 <head> 网页上的控制信息 <title>页面标题</title> </head> <body& ...
- nginx作为负载均衡服务器——测试
i. 需求 nginx作为负载均衡服务器,用户请求先到达nginx,再由nginx根据负载配置将请求转发至 tomcat服务器. nginx负载均衡服务器:192.168.101.3 tomcat1服 ...