D. Directed Roads
 

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
 
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

题意

  n个点得图

  给你n条边,a[i] 表示 i指向a[i]

  现在你可以改变某些边的方向是的 图中不存在环

  问你有多少种方案

题解:

  总共有2^n

  对于这个图,我们视为无向。

  我们要明白 是由多个联通块 组成的 联通块中有可能存在环

  那么定义一个 联通快 上 在环上的 点数是 num , 这个联通块有all个点,之后我们给定方向,利用num,all我们就可以求出 这个联通块不存在环的 方案数了

  那么 对于答案 就是所有联通快不存在环 的 方案数 的乘积

 

#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 1e6+, inf = 2e9, mod = 1e9+; int n,mx = -,f[N],al,num;
int deep[N],vis[N];
vector<int >G[N];
void add(int u,int v){
G[u].push_back(v);
} LL quick_pow(LL x,LL p) {
if(!p) return ;
LL ans = quick_pow(x,p>>);
ans = ans*ans%mod;
if(p & ) ans = ans*x%mod;
return ans;
} void dfs(int u,int fa,int dep) {
al++;
deep[u] = dep;
vis[u] = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(!vis[to])dfs(to,u,dep+);else if(to!=fa) num = (abs(deep[to] - deep[u]) + );
}
}
LL in[N];
int main() {
LL ans = ;
in[] = ;
scanf("%d",&n);
for(int i = ; i < N; ++i) in[i] = 1LL * in[i-] * % mod; for(int i = ; i <= n; ++i) {scanf("%d",&f[i]);add(i,f[i]);add(f[i],i);} for(int i = ; i <= n; ++i) {
al = num = ;
if(vis[i]) continue;
dfs(i,,);
if(al == ) num = ;
ans = (ans * (in[num]-2LL) % mod * in[al-num]) % mod;
}
printf("%I64d\n",(ans+mod) % mod);
return ;
}

Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces Round #369 (Div. 2) D. Directed Roads 数学

    D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...

  4. Codeforces Round #369 (Div. 2)-D Directed Roads

    题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...

  5. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  6. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  7. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  8. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路

    题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...

  9. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

随机推荐

  1. wxPython:事件

    事件──── 是每个 GUI 应用不可舍割的一部分,因为所有的 GUI 应用程序都是基于事件驱动的.从 GUI 程序启动开始,它就回应同户的不同类型的事件.除了用户,也有其它因素可以产生事件,例如:互 ...

  2. mysql性能优化学习笔记-存储引擎

    mysql体系架构 客户端(java.php.python等) mysql服务层(连接管理器.查询解析器.查询优化器.查询缓存) mysql存储引擎(innodb.myisam等) 存储引擎针对表而言 ...

  3. [Linux]安装phpredis扩展

    1.下载phpredis,解压并进入目录,在目录下运行phpize /usr/local/php/bin/phpize ./configure --enable-redis-igbinary --wi ...

  4. ffmpeg-20160726-bin.7z

    ESC 退出 0 进度条开关 1 屏幕原始大小 2 屏幕1/2大小 3 屏幕1/3大小 4 屏幕1/4大小 S 下一帧 [ -2秒 ] +2秒 ; -1秒 ' +1秒 下一个帧 -> -5秒 f ...

  5. [第三方]SDWebImage获取网络图片控件的用法

    #import "UIImageView+WebCache.h" @interface WeatherViewController ()<UISearchBarDelegat ...

  6. code vs1436 孪生素数 2(数论+素数的判定)

    1436 孪生素数 2  时间限制: 2 s  空间限制: 1000 KB  题目等级 : 白银 Silver 题解  查看运行结果     题目描述 Description 如m=100,n=6 则 ...

  7. 【leetcode】Rotate Image(middle)

    You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). ...

  8. 如何把一个excel工作薄中N个工作表复制到另一个工作薄中

    一般遇到标题这样的情况,许多人可能会一个一个的复制粘贴,其实完全不必那么麻烦. 你可以按以下步骤来操作: 第一步:打开所有要操作的excel工作薄\n 第二步:按住Shift键,选择所有要复制的工作表 ...

  9. 开启后台 Service 闪退

    04-29 15:36:23.395: E/ActivityThread(15275): Performing stop of activity that is not resumed: {com.e ...

  10. 常用shell命令操作

    1.找出系统中所有的*.c 和*.h 文件 (-o 或者) $find / -name "*.cpp" -o -name "*.h" 2.设定 eth0 的 I ...