Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
3
2 3 1
6
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are
,
,
initially. Number the roads 1 to 3 in this order.
The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.
The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.
题意:
n个点得图
给你n条边,a[i] 表示 i指向a[i]
现在你可以改变某些边的方向是的 图中不存在环
问你有多少种方案
题解:
总共有2^n
对于这个图,我们视为无向。
我们要明白 是由多个联通块 组成的 联通块中有可能存在环
那么定义一个 联通快 上 在环上的 点数是 num , 这个联通块有all个点,之后我们给定方向,利用num,all我们就可以求出 这个联通块不存在环的 方案数了
那么 对于答案 就是所有联通快不存在环 的 方案数 的乘积
#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 1e6+, inf = 2e9, mod = 1e9+; int n,mx = -,f[N],al,num;
int deep[N],vis[N];
vector<int >G[N];
void add(int u,int v){
G[u].push_back(v);
} LL quick_pow(LL x,LL p) {
if(!p) return ;
LL ans = quick_pow(x,p>>);
ans = ans*ans%mod;
if(p & ) ans = ans*x%mod;
return ans;
} void dfs(int u,int fa,int dep) {
al++;
deep[u] = dep;
vis[u] = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(!vis[to])dfs(to,u,dep+);else if(to!=fa) num = (abs(deep[to] - deep[u]) + );
}
}
LL in[N];
int main() {
LL ans = ;
in[] = ;
scanf("%d",&n);
for(int i = ; i < N; ++i) in[i] = 1LL * in[i-] * % mod; for(int i = ; i <= n; ++i) {scanf("%d",&f[i]);add(i,f[i]);add(f[i],i);} for(int i = ; i <= n; ++i) {
al = num = ;
if(vis[i]) continue;
dfs(i,,);
if(al == ) num = ;
ans = (ans * (in[num]-2LL) % mod * in[al-num]) % mod;
}
printf("%I64d\n",(ans+mod) % mod);
return ;
}
Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量的更多相关文章
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)
D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #369 (Div. 2) D. Directed Roads 数学
D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2)-D Directed Roads
题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...
- Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路
D - Destroying Roads Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路
题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)
题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...
随机推荐
- poj 1276
一道DP的题目,还是一道多重背包的题目,第一次接触. 题意:有现今cash,和n种钱币,每种钱币有ni个,价值为di,求各种钱币组成的不超过cash的最大钱数 思路:可以转换为0/1背包和完全背包来做 ...
- ACM/ICPC 之 "嵌套"队列 -插队(POJ2259)
这里插队的意思就是排队时遇到熟人则插到其后,否则排到队尾.(这个习惯不太好)(题意) 题目要求我们模拟“插队模型”和队列的入队和出队完成此算法. 由于题目的输入输出很多,此题的查找操作(找到熟人)需要 ...
- 【XLL API 函数】 xlfSetName
常常用于创建和删除与DLL定义的名称 原型 Excel12(xlfSetName, LPXLOPER12 pxRes, 2, LPXLOPER12 pxNameText, LPXLOPER12 pxN ...
- 【XLL API 函数】xlfUnregister (Form 1)
此函数可以被 Excel 已经载入的 XLL 或 DLL 调用.它等效于宏表函数 UNREGISTER. xlfUnregister 有两种调用形式: 形式1:Unregister 单独的命令或函数 ...
- iOS-WKWebView携带cookie发送http请求,cookie失效
发送请求代码: NSString *testUrl = @"http://10.22.122.7:8081/test2_action/view_index"; NSURL *url ...
- Hibernate 所有缓存机制详解
hibernate提供的一级缓存 hibernate是一个线程对应一个session,一个线程可以看成一个用户.也就是说session级缓存(一级缓存)只能给一个线程用,别的线程用不了,一级缓存就是和 ...
- 'XCTest/XCTest.h' file not found
直接写解决方法吧:在报错的 Target 中的 Building Settings 中 Framework Search Paths 里面添加 $(PLATFORM_DIR)/Developer/Li ...
- swift学习记录之代理
/// 访客视图的协议 protocol VisitorLoginViewDelegate: NSObjectProtocol { func visitorLoginViewWillRegister( ...
- CUDA中并行规约(Parallel Reduction)的优化
转自: http://hackecho.com/2013/04/cuda-parallel-reduction/ Parallel Reduction是NVIDIA-CUDA自带的例子,也几乎是所有C ...
- 蜥蜴(bzoj 1066)
Description 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平 ...