D. Directed Roads
 

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
 
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

题意

  n个点得图

  给你n条边,a[i] 表示 i指向a[i]

  现在你可以改变某些边的方向是的 图中不存在环

  问你有多少种方案

题解:

  总共有2^n

  对于这个图,我们视为无向。

  我们要明白 是由多个联通块 组成的 联通块中有可能存在环

  那么定义一个 联通快 上 在环上的 点数是 num , 这个联通块有all个点,之后我们给定方向,利用num,all我们就可以求出 这个联通块不存在环的 方案数了

  那么 对于答案 就是所有联通快不存在环 的 方案数 的乘积

 

#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 1e6+, inf = 2e9, mod = 1e9+; int n,mx = -,f[N],al,num;
int deep[N],vis[N];
vector<int >G[N];
void add(int u,int v){
G[u].push_back(v);
} LL quick_pow(LL x,LL p) {
if(!p) return ;
LL ans = quick_pow(x,p>>);
ans = ans*ans%mod;
if(p & ) ans = ans*x%mod;
return ans;
} void dfs(int u,int fa,int dep) {
al++;
deep[u] = dep;
vis[u] = ;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(!vis[to])dfs(to,u,dep+);else if(to!=fa) num = (abs(deep[to] - deep[u]) + );
}
}
LL in[N];
int main() {
LL ans = ;
in[] = ;
scanf("%d",&n);
for(int i = ; i < N; ++i) in[i] = 1LL * in[i-] * % mod; for(int i = ; i <= n; ++i) {scanf("%d",&f[i]);add(i,f[i]);add(f[i],i);} for(int i = ; i <= n; ++i) {
al = num = ;
if(vis[i]) continue;
dfs(i,,);
if(al == ) num = ;
ans = (ans * (in[num]-2LL) % mod * in[al-num]) % mod;
}
printf("%I64d\n",(ans+mod) % mod);
return ;
}

Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces Round #369 (Div. 2) D. Directed Roads 数学

    D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...

  4. Codeforces Round #369 (Div. 2)-D Directed Roads

    题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...

  5. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  6. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  7. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  8. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路

    题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...

  9. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

随机推荐

  1. 【leetcode】Longest Valid Parentheses

    Longest Valid Parentheses Given a string containing just the characters '(' and ')', find the length ...

  2. struts2框架 初始别

    struts2 是webwork和struts合并而来. 1.下载struts2 说明: Full Distribution: 为完整版下载,建议下载它 Example Applications:st ...

  3. CentOS 7部署flume

    CentOS 7部署flume 准备工作: 安装java并设置java环境变量,在`/etc/profile`中加入 export JAVA_HOME=/usr/java/jdk1.8.0_65 ex ...

  4. 4个http常用的content type

    转的: http://www.aikaiyuan.com/6324.html HTTP/1.1 协议规定的 HTTP 请求方法有 OPTIONS.GET.HEAD.POST.PUT.DELETE.TR ...

  5. .NET中的CTS、CLS和CLR

    在学习.NET的过程中,都会不可避免地接触到这三个概念,那么这三个东西是什么以及它们之间的关系是怎样的呢?我们在学习的过程中可能比较过多的会去关注CLR,因为CLR是.NET Framework的核心 ...

  6. Effective C++ -----条款20:宁以pass-by-reference-to-const替换pass-by-value Prefer pass-by-reference-to-const to pass-by-value

    尽量以pass-by-reference-to-const替换pass-by-value.前者通常比较高校,并可避免切割问题(slicing problem). 以上规则并不适用于内置类型,以及STL ...

  7. Effective C++ -----条款14: 在资源管理类中小心copying行为

    复制RAII对象必须一并复制它所管理的资源,所以资源的copying行为决定RAII对象的copying行为. 普遍而常见的RAII class copying行为是:抑制copying(使用私有继承 ...

  8. codeforces 425B Sereja and Table (枚举、位图)

    输入n*m的01矩阵.以及k. n,m<=100,k<=10 问修改至多k个,使得矩阵内的各连通块(连着的0或1构成连通块)都是矩形,且不含另外的数字(边界为0(1)的矩形内不含1(0)) ...

  9. KV6.60 SP1

    组态王6.60 SP1全新发布! 组态王6.60 SP1对过去几年6系列中已解决过的故障进行了合并,包括各主线分支.各OEM版本中的故障总计122个,覆盖运行系统.开发系统.历史趋势曲线控件.报表.A ...

  10. loadrunner备忘

    1.超时设置 2. 可能是操作系统的环境不适合或者浏览器的版本有出入,具体的loadrunner版本支持的IE版本版本如下所示,请仔细核对是否正确.LR版本和IE版本兼容性问题,这个问题是我们安装环境 ...