《机器学习_01_线性模型_线性回归_正则化(Lasso,Ridge,ElasticNet)》
一.过拟合
建模的目的是让模型学习到数据的一般性规律,但有时候可能会学过头,学到一些噪声数据的特性,虽然模型可以在训练集上取得好的表现,但在测试集上结果往往会变差,这时称模型陷入了过拟合,接下来造一些伪数据进行演示:
import os
os.chdir('../')
from ml_models.linear_model import *
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#造伪样本
X=np.linspace(0,100,100)
X=np.c_[X,np.ones(100)]
w=np.asarray([3,2])
Y=X.dot(w)
X=X.astype('float')
Y=Y.astype('float')
X[:,0]+=np.random.normal(size=(X[:,0].shape))*3#添加噪声
Y=Y.reshape(100,1)
#拟合数据并可视化
lr=LinearRegression()
lr.fit(X[:,:-1],Y)
lr.plot_fit_boundary(X[:,:-1],Y)

目前看起来效果还是可以的,但如果加入几个异常点,再看看效果呢
X=np.concatenate([X,np.asanyarray([[100,1],[101,1],[102,1],[103,1],[104,1]])])
Y=np.concatenate([Y,np.asanyarray([[3000],[3300],[3600],[3800],[3900]])])
lr=LinearRegression()
lr.fit(X[:,:-1],Y)
lr.plot_fit_boundary(X[:,:-1],Y)

二.正则化
可以看到,仅仅加入了几个很离谱的异常点,就会对预测产生很大的影响,且偏离很远,这在实际情况中是很常见的;通常可以通过对模型参数添加正则化约束来避免这种情况,使其不会太“飘”,做法是在loss函数中为权重\(w\)添加\(L_1\)或者\(L_2\)约束,借用上一节的公式推导,直接推出loss部分:
1.线性回归中添加\(L_1\)约束称为Lasso回归,其损失函数如下:
\]
2.线性回归中添加\(L_2\)约束称为Ridge回归,其损失函数如下:
\]
3.如果不太确定用\(L_1\)好,还是\(L_2\)好,可以用它们的组合,称作ElasticNet,损失函数如下:
\]
可以发现通过调整超参,可以控制\(w\)的大小,如果\(\lambda\)或\(\alpha\)设置很大,\(w\)会被约束的很小,而如果\(\alpha\)或\(\lambda\)设置为0,等价于原始的不带正则项的线性回归;通常可以通过交叉验证,根据验证集上的表现来设置一个合适的超参;接下来在上一节线性回归代码的基础上实现Lasso,Ridge,ElasticNet模型,另外设置两个参数l1_ratio以及l2_ratio,分别用来控制\(L_1\)和\(L_2\)的loss部分的权重
三.代码实现
class LinearRegression(object):
def __init__(self, fit_intercept=True, solver='sgd', if_standard=True, epochs=10, eta=1e-2, batch_size=1,
l1_ratio=None, l2_ratio=None):
"""
:param fit_intercept: 是否训练bias
:param solver:
:param if_standard:
"""
self.w = None
self.fit_intercept = fit_intercept
self.solver = solver
self.if_standard = if_standard
if if_standard:
self.feature_mean = None
self.feature_std = None
self.epochs = epochs
self.eta = eta
self.batch_size = batch_size
self.l1_ratio = l1_ratio
self.l2_ratio = l2_ratio
# 注册sign函数
self.sign_func = np.vectorize(utils.sign)
def init_params(self, n_features):
"""
初始化参数
:return:
"""
self.w = np.random.random(size=(n_features, 1))
def _fit_closed_form_solution(self, x, y):
"""
直接求闭式解
:param x:
:param y:
:return:
"""
if self.l1_ratio is None and self.l2_ratio is None:
self.w = np.linalg.pinv(x).dot(y)
elif self.l1_ratio is None and self.l2_ratio is not None:
self.w = np.linalg.inv(x.T.dot(x) + self.l2_ratio * np.eye(x.shape[1])).dot(x.T).dot(y)
else:
self._fit_sgd(x, y)
def _fit_sgd(self, x, y):
"""
随机梯度下降求解
:param x:
:param y:
:param epochs:
:param eta:
:param batch_size:
:return:
"""
x_y = np.c_[x, y]
# 按batch_size更新w,b
for _ in range(self.epochs):
np.random.shuffle(x_y)
for index in range(x_y.shape[0] // self.batch_size):
batch_x_y = x_y[self.batch_size * index:self.batch_size * (index + 1)]
batch_x = batch_x_y[:, :-1]
batch_y = batch_x_y[:, -1:]
dw = -2 * batch_x.T.dot(batch_y - batch_x.dot(self.w)) / self.batch_size
# 添加l1和l2的部分
dw_reg = np.zeros(shape=(x.shape[1] - 1, 1))
if self.l1_ratio is not None:
dw_reg += self.l1_ratio * self.sign_func(self.w[:-1]) / self.batch_size
if self.l2_ratio is not None:
dw_reg += 2 * self.l2_ratio * self.w[:-1] / self.batch_size
dw_reg = np.concatenate([dw_reg, np.asarray([[0]])], axis=0)
dw += dw_reg
self.w = self.w - self.eta * dw
def fit(self, x, y):
# 是否归一化feature
if self.if_standard:
self.feature_mean = np.mean(x, axis=0)
self.feature_std = np.std(x, axis=0) + 1e-8
x = (x - self.feature_mean) / self.feature_std
# 是否训练bias
if self.fit_intercept:
x = np.c_[x, np.ones_like(y)]
# 初始化参数
self.init_params(x.shape[1])
# 训练模型
if self.solver == 'closed_form':
self._fit_closed_form_solution(x, y)
elif self.solver == 'sgd':
self._fit_sgd(x, y)
def get_params(self):
"""
输出原始的系数
:return: w,b
"""
if self.fit_intercept:
w = self.w[:-1]
b = self.w[-1]
else:
w = self.w
b = 0
if self.if_standard:
w = w / self.feature_std.reshape(-1, 1)
b = b - w.T.dot(self.feature_mean.reshape(-1, 1))
return w.reshape(-1), b
def predict(self, x):
"""
:param x:ndarray格式数据: m x n
:return: m x 1
"""
if self.if_standard:
x = (x - self.feature_mean) / self.feature_std
if self.fit_intercept:
x = np.c_[x, np.ones(shape=x.shape[0])]
return x.dot(self.w)
def plot_fit_boundary(self, x, y):
"""
绘制拟合结果
:param x:
:param y:
:return:
"""
plt.scatter(x[:, 0], y)
plt.plot(x[:, 0], self.predict(x), 'r')
Lasso
lasso=LinearRegression(l1_ratio=100)
lasso.fit(X[:,:-1],Y)
lasso.plot_fit_boundary(X[:,:-1],Y)

Ridge
ridge=LinearRegression(l2_ratio=10)
ridge.fit(X[:,:-1],Y)
ridge.plot_fit_boundary(X[:,:-1],Y)

ElasticNet
elastic=LinearRegression(l1_ratio=100,l2_ratio=10)
elastic.fit(X[:,:-1],Y)
elastic.plot_fit_boundary(X[:,:-1],Y)

将sign函数整理到ml_models.utils中
《机器学习_01_线性模型_线性回归_正则化(Lasso,Ridge,ElasticNet)》的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- python 异步Web框架sanic
我们继续学习Python异步编程,这里将介绍异步Web框架sanic,为什么不是tornado?从框架的易用性来说,Flask要远远比tornado简单,可惜flask不支持异步,而sanic就是类似 ...
- ORM之单表、多表操作
参考1 参考2 表与表之间的关系: 一对一(OneToOneField):一对一字段无论建在哪张关系表里面都可以,但是推荐建在查询频率比较高的那张表里面 一对多(ForeignKey):一对多字段建在 ...
- 2019-2020-1 20199326《Linux内核原理与分析》第三周作业
第三周学习内容 庖丁解牛Linux内核分析第二章:操作系统是如何工作的 Linux内核分析实验二 学到的一些知识 计算机的三大法宝:存储程序计算机,函数调用堆栈,中断 堆栈是C语言程序运行时必须使用的 ...
- 2019-2020-1 20199329《Linux内核原理与分析》第十二周作业
<Linux内核原理与分析>第十二周作业 一.本周内容概述: 通过编程理解 Set-UID 的运行机制与安全问题 完成实验楼上的<SET-UID程序漏洞实验> 二.本周学习内容 ...
- 【杂谈】从实现角度看ChannelFuture
JDK中的Future特性 在介绍Netty的ChannelFuture之前,我们先来看看JDK中的Future是如何实现的.总的来说就是任务提交的时候会使用装饰器模式,将任务包装成一个FutureT ...
- 手把手教你用Rancher创建产品质量数据库设置
目标:在本文中,我们将介绍如何运行一个分布式产品质量数据库设置,它由Rancher进行管理,并且保证持久性.为了部署有状态的分布式Cassandra数据库,我们将使用Stateful Sets (有状 ...
- Visual Studio Code插件安装步骤
1.进入扩展视图视图安装或卸载(快捷键Ctrl+shift+x) 转载于:https://www.cnblogs.com/SakalakaZ/p/7725159.html
- USACO Training Section 1.2 挤牛奶Milking Cows
题目描述 三个农民每天清晨5点起床,然后去牛棚给3头牛挤奶.第一个农民在300秒(从5点开始计时)给他的牛挤奶,一直到1000秒.第二个农民在700秒开始,在 1200秒结束.第三个农民在1500秒开 ...
- 课堂管理系统;在线教辅平台;java课设
# 白泽智慧教辅平台 **说明:** 运行时需要修改位置: bzedu\src\main\resources\application.properties bzedu\src\main\resourc ...
- C. Cave Painting(最小公倍数的应用)
\(\color{Red}{网上的题解都是投机取巧啊,虽然也没错}\) \(Ⅰ.先说一下投机取巧的方法\) \(自己写几个例子会发现k很小的时候满足条件的n就变得很大\) \(所以我们直接暴力从1判断 ...