鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n 的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果i时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为(i,j)的网格移向(i-, j),(i+, j),(i,j-),(i,j+)四个网格,机器人不能走出整个 n*n 的网格。游戏开始时,你可以自由选定机器人的初始位置。现在你知道在一段时间内,鼹鼠出现的时间和地点,希望你编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。

题目大意

这个题很狗妙的没有给出初始位置


那从初始位置直接遍历去找自然行不通了


我们可以把动态转移数组定义为ans[i]为最后一个打i这只鼹鼠时所能打死的最多鼹鼠


遍历i然后遍历一遍下一个状态,或者说打死这个鼹鼠的上一只鼹鼠的状态


动态转移方程也就出来了:ans[i] = max(ans[i],ans[j] + 1);


然后就是判断语句

如果可以打死这只鼹鼠的条件是嘛呢
由题意可以知道time 是限制条件

那让(abs(x[i] - x[j]) + abs(y[i] - y[j]) <= abs(t[i] - t[j])) 就好了

下面看代码

s#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+;
int dp[maxn],t[maxn],x[maxn],y[maxn],N,M,ans[maxn]; void read(){
scanf("%d%d",&N,&M);
for(int i = ;i <= M;++i)scanf("%d%d%d",&t[i],&x[i],&y[i]);
} int main(){
read();
for(int i = ;i <= M;++i){
for(int j = ;j < i;++j){
if(abs(x[i] - x[j]) + abs(y[i] - y[j]) <= abs(t[i] - t[j]))
ans[i] = max(ans[i],ans[j] + );
}
}
int ac = ;
for(int i = ;i <= M;++i)ac = max(ac,ans[i]);
printf("%d",ans[M]+);
return ;
}

感谢观看
嗝儿
>?<)))
 

线性dp 打鼹鼠的更多相关文章

  1. 线性dp打鼹鼠

    题目大意 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个 的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气.你可 ...

  2. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  3. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  4. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  5. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  6. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  7. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  8. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  9. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

随机推荐

  1. 用python做时间序列预测一:初识概念

    利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况.比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的. 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时 ...

  2. Vuex原理实现

    Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 思考问题 Vuex 只在更实例引入了,那么 ...

  3. JavaSE (五)面向对象 -- 概述

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 目录 一.面向对象的主线 二.面向对象 VS 面向过程 三 . java最基本的两个要素 - 类和对象 ...

  4. Java实现 LeetCode 138 复制带随机指针的链表

    138. 复制带随机指针的链表 给定一个链表,每个节点包含一个额外增加的随机指针,该指针可以指向链表中的任何节点或空节点. 要求返回这个链表的 深拷贝. 我们用一个由 n 个节点组成的链表来表示输入/ ...

  5. Java实现 LeetCode 53 最大子序和

    53. 最大子序和 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 ...

  6. java实现第七届蓝桥杯分小组

    分小组 分小组 9名运动员参加比赛,需要分3组进行预赛. 有哪些分组的方案呢? 我们标记运动员为 A,B,C,... I 下面的程序列出了所有的分组方法. 该程序的正常输出为: ABC DEF GHI ...

  7. CentOS7搭建Pacemaker高可用集群(1)

    Pacemaker是Red Hat High Availability Add-on的一部分.在RHEL上进行试用的最简单方法是从Scientific Linux 或CentOS存储库中进行安装 环境 ...

  8. tensorflow2.0学习笔记第一章第一节

    一.简单的神经网络实现过程 1.1张量的生成 # 创建一个张量 #tf.constant(张量内容,dtpye=数据类型(可选)) import tensorflow as tf import num ...

  9. [computer graphics]世界坐标系->相机坐标系详细推导

    基变换 理论部分 在n维的线性空间中,任意n个线性无关的向量都可以作为线性空间的基,即空间基不唯一.对于不同的基,同一个向量的坐标一般是不同的.因为在计算机图形学中,主要研究三维的空间,所以可以简化问 ...

  10. Quartz SpringBoot 简单整合一下

    一次简单的代码整合记录. 数据库准备 如果是MySQL可能出现一些小问题.比如联合主键长度超限制,已经记录解决办法了. CREATE TABLE QRTZ_JOB_DETAILS ( SCHED_NA ...