P3355 骑士共存问题 网络流
骑士共存
题目描述
在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入

对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击
输入输出格式
输入格式:
第一行有 2 个正整数n 和 m (1<=n<=200, 0<=m<n2),分别表示棋盘的大小和障碍数。接下来的 m 行给出障碍的位置。每行 2 个正整数,表示障碍的方格坐标。
输出格式:
将计算出的共存骑士数输出
输入输出样例
3 2
1 1
3 3
5 这个题目和刚刚那个题目很像也是一个网络流的最大独立集题目,
既然如此,我们就照着那个题目来分析。
首先我们要把可以两个互斥的格子进行分开,然后和之前的一比对,会发现如果两个任何两个互斥的骑士他们的横纵坐标之和的奇偶性不相同。
所以这就说明,我们可以像之前一样,用这个奇偶性把他们分成两个部分,还是一样,在同一个部分的肯定不互斥,不在同一个部分可能互斥。
这个多了一个障碍物,我觉得这个可以理解为这个格子不见了,所以不要管他就可以了。
这个建图就是 s连接一个部分,容量就是1,一个部分与另一个部分互斥的数相连,容量为inf,另一个部分和t相连。
那么这个我们再理解一下,所以这个最大流就意味着,最少的不能占的地方。
所以 ans=没有障碍物的总格子数量 - 最大流,
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5 + ;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init(int n)
{
for (int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
//printf("ww %d %d %d\n", u, v, c);
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++)
{
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < )
{
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > )
{
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for (;;)
{
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > )
{
flow += f;
}
}
return flow;
}
bool vis[][];
int dx[] = { -,-,-,-,,,, };
int dy[] = { -,-,,,,,-,- }; int main()
{
int n, m;
cin >> n >> m;
memset(vis, , sizeof(vis));
for(int i=;i<=m;i++)
{
int x, y;
cin >> x >> y;
vis[x][y] = ;
}
int s = , t = n * n + ;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if (vis[i][j]) continue;
int ex = (i - )*n + j;
if((i+j)&)
{
add(s, ex, );
for(int k=;k<;k++)
{
int tx = i + dx[k];
int ty = j + dy[k]; if (tx > n || tx< || ty>n || ty < ) continue;
if (vis[tx][ty]) continue; //printf("i=%d j=%d tx=%d ty=%d\n", i, j, tx, ty);
int ed = (tx - )*n + ty;
add(ex, ed, inf);
}
}
else add(ex, t, );
}
}
int ans = Maxflow(s, t);
//printf("%d\n", ans);
printf("%d\n", n*n - m - ans);
return ;
}
P3355 骑士共存问题 网络流的更多相关文章
- P3355 骑士共存问题
P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...
- P3355 骑士共存问题 二分建图 + 当前弧优化dinic
P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...
- 洛谷P3355 骑士共存问题 二分图_网络流
Code: #include<cstdio> #include<cstring> #include<queue> #include<vector> #i ...
- 【Luogu】P3355骑士共存问题(最小割)
题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...
- 洛谷P3355 骑士共存问题
题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...
- P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图
展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...
- 2018.08.02 洛谷P3355 骑士共存问题(最小割)
传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...
- LUOGU P3355 骑士共存问题(二分图最大独立集)
传送门 因为骑士只能走"日"字,所以一定是从一个奇点到偶点或偶点到奇点,那么这就是一张二分图,题目要求的其实就是二分图的最大独立集.最大独立集=n-最大匹配. #include&l ...
- codevs 1922 骑士共存问题 网络流
题目链接 给一个n*n的棋盘, 上面有障碍物, 有障碍物的不能放东西.然后往上面放马, 马不能互相攻击, 问最多可以放多少个马. 按x+y的奇偶来划分, 如果两个格子可以互相攻击, 就连一条权值为1的 ...
随机推荐
- web 应用 为啥 需要用到 tomcat 之类的 部署
首先了解C/s架构 比如我们常见的QQ,魔兽世界等 这种结构的程序是有服务器来提供服务的,客户端来使用服务 而B/S架构是这样的 它不需要安装客户端,只需要浏览器就可以了 例如QQ农场,这样对客户端的 ...
- Atlassian 系列软件安装(Crowd+JIRA+Confluence+Bitbucket+Bamboo)
公司使用的软件开发和协作工具为 Atlassian 系列软件,近期需要从腾讯云迁移到阿里云环境,简单记录下安装和配置过程.(Atlassian 的文档非常详尽,过程中碰见的问题都可以找到解决办法.) ...
- 今天整理了几个在使用python进行数据分析的常用小技巧、命令。
提高Python数据分析速度的八个小技巧 01 使用Pandas Profiling预览数据 这个神器我们在之前的文章中就详细讲过,使用Pandas Profiling可以在进行数据分析之前对数据进行 ...
- 移动硬盘临时文件太多怎么办,python黑科技帮你解决
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 星安果 PS:如果想了解更多关于python的应用,可以私信我,或者 ...
- Eureka源码分析
源码流程图 先上图,不太清晰,抱歉 一.Eureka Server源码分析 从@EnableEurekaServer注解为入口,它是一个标记注解,点进去看 注解内容如下 /** * 激活Eureka服 ...
- 基于Python的Webservice开发(四)-泛微OA的SOAP接口
一.功能需求 泛微e-cology可以在流程中调用Webservice接口实现与其他系统的联动等复杂功能.但是目前泛微文档中仅提供了调用的方法,但是没有关于接口的相关开发信息. 本次案例是用Pytho ...
- 深度剖析前端JavaScript中的原型(JS的对象原型)
这张图片有点劝退了,哈哈哈~ 通过原型机制,JavaScript 中的对象从其他对象继承功能特性:这种继承机制与经典的面向对象编程语言的继承机制不同.本文将探讨这些差别,解释原型链如 ...
- 用pip install不能成功安装时的处理方法
解决办法: pip install pymysql -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
- 【山外笔记-云原生】《Docker+Kubernetes应用开发与快速上云》读书笔记-2020.04.25(六)
书名:Docker+Kubernetes应用开发与快速上云 作者:李文强 出版社:机械工业出版社 出版时间:2020-01 ISBN:9787111643012 [山外笔记-云原生]<Docke ...
- python 中自带的堆模块heapq
import heapq my_heap = [] #使用列表保存数据 #网列表中插入数据,优先级使用插入的内容来表示,就是一个比较大小的操作,越大优先级越高 heapq.heappush(my_he ...