【Hadoop离线基础总结】MapReduce 社交粉丝数据分析 求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
MapReduce 社交粉丝数据分析
求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
- 用户及好友数据
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
- java代码
需要两步完成需求
首先先创建第一步的package
在package中定义main、Mapper、Reducer三个类
定义一个Mapper类
package cn.itcast.demo1.step1;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class Step1Mapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//输入数据如下格式 A:B,C,D,E,O
//将用户和好友列表分开
String[] split = value.toString().split(":");
//将好友列表分开,放到一个数组中去
String[] friendList = split[1].split(",");
//循环遍历,输出的k2,v2格式为 B [A,E]
for (String friend : friendList) {
context.write(new Text(friend), new Text(split[0]));
}
}
}
定义一个Reducer类
package cn.itcast.demo1.step1;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class Step1Reducer extends Reducer<Text,Text,Text,Text> {
/*
reduce接收到数据是 B [A,E]
B是好友,集合里面装的是多个用户
将数据最终转换成这样的形式进行输出 A-B-E-F-G-H-K- C
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//创建StringBuffer对象
StringBuffer sb = new StringBuffer();
//循环遍历得到v2并拼接成字符串
for (Text value : values) {
sb.append(value.toString()).append("-");
}
context.write(new Text(sb.toString()),key);
}
}
程序main函数入口
package cn.itcast.demo1.step1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Step1Main extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "step1");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/input/friends.txt"));
//自定义map逻辑
job.setMapperClass(Step1Mapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//自定义reduce逻辑
job.setReducerClass(Step1Reducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step1_output"));
//将任务提交至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new Step1Main(), args);
System.exit(run);
}
}
运行完成后,得到第一步的数据
F-D-O-I-H-B-K-G-C- A
E-A-J-F- B
K-A-B-E-F-G-H- C
G-K-C-A-E-L-F-H- D
G-F-M-B-H-A-L-D- E
M-D-L-A-C-G- F
M- G
O- H
C-O- I
O- J
B- K
E-D- L
F-E- M
J-I-H-A-F- O
创建第二步的package
在package中定义main、Mapper、Reducer三个类
定义一个Mapper类
package cn.itcast.demo1.step2;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.Arrays;
public class Step2Mapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//对拿到的数据进行分割,得到用户列表和好友
String[] split = value.toString().split("\t");
//再对用户列表进行分割,得到用户列表数组
String[] userList = split[0].split("-");
//因为文件中的数据并不是按照字典顺序进行排序,所以有可能会出来A-E E-A的情况,reduceTask是无法将这种情况视为key相同的
//所以需要进行排序
Arrays.sort(userList);
for (int i = 0; i < userList.length - 1; i++) {
for (int j = i + 1; j < userList.length; j++) {
String userTwo = userList[i] + "-" + userList[j];
context.write(new Text(userTwo), new Text(split[1]));
}
}
}
}
定义一个reducer类
package cn.itcast.demo1.step2;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class Step2Reducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//创建StringBuffer对象
StringBuffer sb = new StringBuffer();
for (Text value : values) {
//获取共同好友列表
sb.append(value.toString()).append("-");
}
context.write(key, new Text(sb.toString()));
}
}
程序main函数入口
package cn.itcast.demo1.step2;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class Step2Main extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "step2");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step1_output"));
//自定义map逻辑
job.setMapperClass(Step2Mapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//自定义reduce逻辑
job.setReducerClass(Step2Reducer.class);
//设置k3,v3输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//输出数据,设置输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/共同好友/step2_output"));
//提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new Step2Main(), args);
System.exit(run);
}
}
运行结果为
A-B C-E-
A-C D-F-
A-D F-E-
A-E C-B-D-
A-F D-O-E-B-C-
A-G C-D-F-E-
A-H E-C-O-D-
A-I O-
A-J O-B-
A-K C-D-
A-L E-D-F-
A-M F-E-
B-C A-
B-D E-A-
B-E C-
B-F E-A-C-
B-G A-E-C-
B-H E-C-A-
B-I A-
B-K A-C-
B-L E-
B-M E-
B-O A-
C-D F-A-
C-E D-
C-F A-D-
C-G F-D-A-
C-H D-A-
C-I A-
C-K A-D-
C-L D-F-
C-M F-
C-O I-A-
D-E L-
D-F A-E-
D-G F-A-E-
D-H A-E-
D-I A-
D-K A-
D-L F-E-
D-M F-E-
D-O A-
E-F M-C-B-D-
E-G C-D-
E-H C-D-
E-J B-
E-K C-D-
E-L D-
F-G A-D-E-C-
F-H D-O-C-E-A-
F-I O-A-
F-J B-O-
F-K A-D-C-
F-L D-E-
F-M E-
F-O A-
G-H E-A-C-D-
G-I A-
G-K C-D-A-
G-L D-E-F-
G-M E-F-
G-O A-
H-I O-A-
H-J O-
H-K D-A-C-
H-L E-D-
H-M E-
H-O A-
I-J O-
I-K A-
I-O A-
K-L D-
K-O A-
L-M F-E-
【Hadoop离线基础总结】MapReduce 社交粉丝数据分析 求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?的更多相关文章
- 【Hadoop离线基础总结】impala简单介绍及安装部署
目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...
- 【Hadoop离线基础总结】oozie的安装部署与使用
目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...
- 【Hadoop离线基础总结】Hue的简单介绍和安装部署
目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...
- 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发
目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...
- 【Hadoop离线基础总结】Hive调优手段
Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...
- 【Hadoop离线基础总结】Sqoop常用命令及参数
目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...
- 【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator
MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt ...
- 【Hadoop离线基础总结】工作流调度器azkaban
目录 Azkaban概述 工作流调度系统的作用 工作流调度系统的实现 常见工作流调度工具对比 Azkaban简单介绍 安装部署 Azkaban的编译 azkaban单服务模式安装与使用 azkaban ...
- 【Hadoop离线基础总结】数据仓库和hive的基本概念
数据仓库和Hive的基本概念 数据仓库 概述 数据仓库英文全称为 Data Warehouse,一般简称为DW.主要目的是构建面向分析的集成化数据环境,主要职责是对仓库中的数据进行分析,支持我们做决策 ...
随机推荐
- 解决click与hover(mouseover)的冲突问题
主要应用到一个知识点:$(selector).data('name','value'); <!DOCTYPE HTML> <html> <head> <met ...
- 45道SQL数据题详解1
准备阶段: 创建表: //创建学生表,前面的s表示学生,相应的标签前面加t表示老师 CREATE TABLE students (sno VARCHAR(3) NOT NULL, sname VARC ...
- [YII2] 展示页面显示图片 以及手机号隐藏为*和姓名隐藏姓为*,
- 【题解】P3349 [ZJOI2016]小星星 - 子集dp - 容斥
P3349 [ZJOI2016]小星星 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 小 \(Y\) 是一个心灵手巧 ...
- 聊聊Spring Boot Actuator
概述 在本文中,我们将介绍Spring Boot Actuator.我们将首先介绍基础知识,然后详细讨论Spring Boot 1.x和2.x中的可用内容. 我们将在Spring Boot 1.x中学 ...
- 设计模式 - 迭代器模式详解及其在ArrayList中的应用
基本介绍 迭代器模式(Iterator Pattern)是 Java 中使用最多的一种模式,它可以顺序的访问容器中的元素,但不需要知道容器的内部细节 模式结构 Iterator(抽象迭代器):定义遍历 ...
- [USACO3.2]魔板 Magic Squares
松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...
- 理解分布式一致性:Paxos协议之Multi-Paxos
理解分布式一致性:Paxos协议之Multi-Paxos Multi-Paxos without failures Multi-Paxos when phase 1 can be skipped Mu ...
- java 之 servlet简介
Servlet 是什么? Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 HTTP 服务器上的数据库或应用程序之间 ...
- 微软宣布一批新获得Microsoft Teams认证的会议硬件
COVID-19 疾病流行期间,微软见到了 Microsoft Teams 视频会议解决方案取得的巨大增长.然而在许多情况下,生产力与音视频硬件的质量息息相关.好消息是,该公司刚刚完成了一批第三方硬件 ...