Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24147    Accepted Submission(s): 12938

Problem Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The
researchers have n types of blocks, and an unlimited supply of blocks
of each type. Each type-i block was a rectangular solid with linear
dimensions (xi, yi, zi). A block could be reoriented so that any two of
its three dimensions determined the dimensions of the base and the other
dimension was the height.

They want to make sure that the
tallest tower possible by stacking blocks can reach the roof. The
problem is that, in building a tower, one block could only be placed on
top of another block as long as the two base dimensions of the upper
block were both strictly smaller than the corresponding base dimensions
of the lower block because there has to be some space for the monkey to
step on. This meant, for example, that blocks oriented to have
equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.



Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.



Output

For
each test case, print one line containing the case number (they are
numbered sequentially starting from 1) and the height of the tallest
possible tower in the format "Case case: maximum height = height".

Sample Input


Sample Output

Case : maximum height =
Case : maximum height =
Case : maximum height =
Case : maximum height =

题目大意

给出一些长方体的规格,每种长方体都有无限个,问利用这些长方体(长宽高可以转换),下层的长和宽都比上层的大,最多能堆多高

题目分析

虽说是无限多个,但是由于长和高堆起来都不能相等,所以一个规格的长方体最多能用6个(长宽高的不同排列),这样就将题目转化成了一个有限的木块的题目。

首先将木块按照x值与y值从大到小排序,用dp[i]来记录i为最顶端木块时,所能达到的最大高度。

由于我们已经将木块排好序了,那么处理到 i 木块时,能在这个木块底下的就只有 [0, i-1] 这些木块,所以用一个 j 从0循环到 i-1:

如果i的x和y小于j的x和y,那么dp[i]显然等于:max ( dp[j] + a[i].h , dp[i] )

求出dp[i]时,要注意更新结果。

代码

#include <bits/stdc++.h>  

using namespace std; 

typedef struct
{
int x;
int y;
int h;
}node;
node a[]; int i,n,num,x,y,z,t=,anss,dp[],j; bool cmp (node a,node b)
{
if(a.x>b.x)
return ;
else if(a.x==b.x&&a.y>b.y)
return ;
else return ;
} int main()
{
while(scanf("%d",&n),n!=)
{
t++;
memset(a,,sizeof(a));
num=;
for(i=;i<=n;i++)
{
scanf("%d %d %d",&x,&y,&z);
//cout<<x<<y<<z;
a[num].x=x,a[num].y=y,a[num].h=z;
num++;
a[num].x=y,a[num].y=x,a[num].h=z;
num++;
a[num].x=z,a[num].y=x,a[num].h=y;
num++;
a[num].x=z,a[num].y=y,a[num].h=x;
num++;
a[num].x=x,a[num].y=z,a[num].h=y;
num++;
a[num].x=y,a[num].y=z,a[num].h=x;
num++;
}
sort(a,a+num,cmp);
anss=;
memset(dp,,sizeof(dp));
for(i=;i<num;i++)
dp[i]=a[i].h;
for(i=;i<num;i++)
{
for(j=;j<i;j++)
{
if(a[i].x<a[j].x&&a[i].y<a[j].y)
dp[i]=max(dp[j]+a[i].h,dp[i]);
}
if(dp[i]>anss)
anss=dp[i];
}
printf("Case %d: maximum height = %d\n",t,anss);
}
}

HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)的更多相关文章

  1. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  2. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  3. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  4. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  5. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

  9. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. layui的数据表格加上操作

    数据表格加上操作. <script type="text/html" id="barDemo"> <a class="layui-b ...

  2. C# 输出双引号

    Response.Write("前一页面的标题是:\"" +Page.PreviousPage.Title.ToString()+"\"") ...

  3. 数据库范式以及ER图

    数据库范式包括第一.第二.第三以及BCNF范式,关于范式的探讨,博主在知乎上看见了一篇很不错的文章,分享文中,这边就不再做阐述.地址:https://www.zhihu.com/question/24 ...

  4. Confluence 6 多媒体文件和在页面中显示文件列表

    多媒体文件 文件的预览同时也支持 MP3 音频和 MP4 视频文件.Confluence 使用 HTML 5 来播放附加的音频和视频文件.这个意味着这些文件类型的文件格式,用户可以在支持的浏览器中直接 ...

  5. 【杂题】[AGC034F] RNG and XOR【集合幂级数】【FWT】【DP】

    Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v ...

  6. create-react-app 构建的项目使用 css module 方式来书写 css

    先 yarn eject 释放出来配置文件具体参见我之前写过相关的文章(这里不再重复), 找到 config 文件夹下的文件如下图所示: 找到如图所示的配置: 书写 css 的文件名例如(App.mo ...

  7. Linux环境下TomCat使用指定JDK的版本

    服务器是web服务器,在上面安装了jdk1.7和jdk1.8.及多个tomcat应用,默认/etc/profile 配置的jdk1.7,大部分tomcat应用使用的也是jdk1.7, 但目前有一个新项 ...

  8. tps吞吐量映射的问题

    tps随着时间增加,吞吐量增加,但到达一定时间,吞吐不变,出现瓶颈,可能是以下原因 1/反应宽带问题 2/连接数释放问题 3/cpu占有率超出问题 4/内存不够问题 5/数据库连接屏蔽 用jmeter ...

  9. 第十一周Java学习总结。

    java UI 图形界面知识梳理: ATM: 在整个AWT包中提供的所有工具类主要分为以下3种. (1)组件:Component. (2)容器:Container. (3)布局管理器:LayoutMa ...

  10. leetcode-easy-dynamic-121 Best Time to Buy and Sell Stock

    mycode  70.94% 思路:其实没必要去考虑在计算了一个max-min后,后面又出现了一个新的的最小值的情况,因为res取值就是取自己和新的res的最大值 在遇见max值之前,遇见新的最小值, ...