[Flink原理介绍第四篇】:Flink的Checkpoint和Savepoint介绍
原文:https://blog.csdn.net/hxcaifly/article/details/84673292
https://blog.csdn.net/zero__007/article/details/88201498
https://www.jianshu.com/p/8e74c7cdd463
https://blog.csdn.net/u013014724/article/details/84800255
第一部分:Flink的Checkpoint
1. Flink Checkpoint原理介绍
Checkpoint是Flink实现容错机制最核心的功能,它能够根据配置周期性地基于Stream中各个Operator的状态来生成Snapshot,从而将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些Snapshot进行恢复,从而修正因为故障带来的程序数据状态中断。这里,我们简单理解一下Flink Checkpoint机制,如官网下图所示:

Checkpoint指定触发生成时间间隔后,每当需要触发Checkpoint时,会向Flink程序运行时的多个分布式的Stream Source中插入一个Barrier标记,这些Barrier会根据Stream中的数据记录一起流向下游的各个Operator。当一个Operator接收到一个Barrier时,它会暂停处理Steam中新接收到的数据记录。因为一个Operator可能存在多个输入的Stream,而每个Stream中都会存在对应的Barrier,该Operator要等到所有的输入Stream中的Barrier都到达。当所有Stream中的Barrier都已经到达该Operator,这时所有的Barrier在时间上看来是同一个时刻点(表示已经对齐),在等待所有Barrier到达的过程中,Operator的Buffer中可能已经缓存了一些比Barrier早到达Operator的数据记录(Outgoing Records),这时该Operator会将数据记录(Outgoing Records)发射(Emit)出去,作为下游Operator的输入,最后将Barrier对应Snapshot发射(Emit)出去作为此次Checkpoint的结果数据。
2. Checkpoint的简单设置
开启Checkpoint功能,有两种方式。其一是在conf/flink_conf.yaml中做系统设置;其二是针对任务再代码里灵活配置。但是我个人推荐第二种方式,针对当前任务设置,设置代码如下所示:
1 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
2 // 设置保存点的保存路径,这里是保存在hdfs中
3 env.setStateBackend(new FsStateBackend("hdfs://namenode01.td.com/flink-1.5.3/flink-checkpoints"));
4 CheckpointConfig config = env.getCheckpointConfig();
5 // 任务流取消和故障应保留检查点
6 config.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
7 // 保存点模式:exactly_once
8 config.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
9 // 触发保存点的时间间隔
10 config.setCheckpointInterval(60000);
上面调用enableExternalizedCheckpoints设置为ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION,表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint处理。上面代码配置了执行Checkpointing的时间间隔为1分钟。
3. 保存多个Checkpoint
默认情况下,如果设置了Checkpoint选项,则Flink只保留最近成功生成的1个Checkpoint,而当Flink程序失败时,可以从最近的这个Checkpoint来进行恢复。但是,如果我们希望保留多个Checkpoint,并能够根据实际需要选择其中一个进行恢复,这样会更加灵活,比如,我们发现最近4个小时数据记录处理有问题,希望将整个状态还原到4小时之前。
Flink可以支持保留多个Checkpoint,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,指定最多需要保存Checkpoint的个数:
state.checkpoints.num-retained: 20
这样设置以后,运行Flink Job,并查看对应的Checkpoint在HDFS上存储的文件目录,示例如下所示:
hdfs dfs -ls /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/
Found 22 items
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:23 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-858
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:24 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-859
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:25 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-860
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:26 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-861
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:27 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-862
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:28 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-863
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:29 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-864
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:30 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-865
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:31 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-866
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:32 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-867
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:33 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-868
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:34 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-869
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:35 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-870
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:36 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-871
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:37 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-872
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:38 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-873
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:39 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-874
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:40 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-875
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:41 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-876
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:42 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-877
drwxr-xr-x - hadoop supergroup 0 2018-08-31 20:05 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/shared
drwxr-xr-x - hadoop supergroup 0 2018-08-31 20:05 /flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/taskowned
可见,我们配置了state.checkpoints.num-retained的值为20,只保留了最近的20个Checkpoint。如果希望会退到某个Checkpoint点,只需要指定对应的某个Checkpoint路径即可实现。
4.从Checkpoint进行恢复
如果Flink程序异常失败,或者最近一段时间内数据处理错误,我们可以将程序从某一个Checkpoint点,比如chk-860进行回放,执行如下命令:
bin/flink run -s hdfs://namenode01.td.com/flink-1.5.3/flink-checkpoints/582e17d2cc343e6c56255d111bae0191/chk-860/_metadata flink-app-jobs.jar
程序正常运行后,还会按照Checkpoint配置进行运行,继续生成Checkpoint数据,如下所示:
hdfs dfs -ls /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e
Found 6 items
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:56 /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e/chk-861
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:57 /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e/chk-862
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:58 /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e/chk-863
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:59 /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e/chk-864
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:55 /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e/shared
drwxr-xr-x - hadoop supergroup 0 2018-09-01 10:55 /flink-1.5.3/flink-checkpoints/11bbc5d9933e4ff7e25198a760e9792e/taskowned
从上面我们可以看到,前面Flink Job的ID为582e17d2cc343e6c56255d111bae0191,所有的Checkpoint文件都在以Job ID为名称的目录里面,当Job停掉后,重新从某个Checkpoint点(chk-860)进行恢复时,重新生成Job ID(这里是11bbc5d9933e4ff7e25198a760e9792e),而对应的Checkpoint编号会从该次运行基于的编号继续连续生成:chk-861、chk-862、chk-863等等。
第二部分: Flink的Savepoint
1.Flink的Savepoint原理介绍
Savepoint会在Flink Job之外存储自包含(self-contained)结构的Checkpoint,它使用Flink的Checkpoint机制来创建一个非增量的Snapshot,里面包含Streaming程序的状态,并将Checkpoint的数据存储到外部存储系统中。
Flink程序中包含两种状态数据,一种是用户定义的状态(User-defined State),他们是基于Flink的Transformation函数来创建或者修改得到的状态数据;另一种是系统状态(System State),他们是指作为Operator计算一部分的数据Buffer等状态数据,比如在使用Window Function时,在Window内部缓存Streaming数据记录。为了能够在创建Savepoint过程中,唯一识别对应的Operator的状态数据,Flink提供了API来为程序中每个Operator设置ID,这样可以在后续更新/升级程序的时候,可以在Savepoint数据中基于Operator ID来与对应的状态信息进行匹配,从而实现恢复。当然,如果我们不指定Operator ID,Flink也会我们自动生成对应的Operator状态ID。
而且,强烈建议手动为每个Operator设置ID,即使未来Flink应用程序可能会改动很大,比如替换原来的Operator实现、增加新的Operator、删除Operator等等,至少我们有可能与Savepoint中存储的Operator状态对应上。另外,保存的Savepoint状态数据,毕竟是基于当时程序及其内存数据结构生成的,所以如果未来Flink程序改动比较大,尤其是对应的需要操作的内存数据结构都变化了,可能根本就无法从原来旧的Savepoint正确地恢复。
下面,我们以Flink官网文档中给定的例子,来看下如何设置Operator ID,代码如下所示:
DataStream<String> stream = env.
// 有状态的source ID (例如:Kafka)
.addSource(new StatefulSource())
.uid("source-id") // source操作的ID
.shuffle()
// 有状态的mapper ID
.map(new StatefulMapper())
.uid("mapper-id") // mapper的ID
// 无状态sink打印
.print(); // 自动生成ID
2.创建Savepoint
创建一个Savepoint,需要指定对应Savepoint目录,有两种方式来指定:
一种是,需要配置Savepoint的默认路径,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,设置Savepoint存储目录,例如如下所示:
state.savepoints.dir: hdfs://namenode01.td.com/flink-1.5.3/flink-savepoints
另一种是,在手动执行savepoint命令的时候,指定Savepoint存储目录,命令格式如下所示:
bin/flink savepoint :jobId [:targetDirectory]
例如,正在运行的Flink Job对应的ID为40dcc6d2ba90f13930abce295de8d038,使用默认state.savepoints.dir配置指定的Savepoint目录,执行如下命令:
bin/flink savepoint 40dcc6d2ba90f13930abce295de8d038
可以看到,在目录hdfs://namenode01.td.com/flink-1.5.3/flink-savepoints/savepoint-40dcc6-4790807da3b0下面生成了ID为40dcc6d2ba90f13930abce295de8d038的Job的Savepoint数据。
为正在运行的Flink Job指定一个目录存储Savepoint数据,执行如下命令:
bin/flink savepoint 40dcc6d2ba90f13930abce295de8d038 hdfs://namenode01.td.com/tmp/flink/savepoints
可以看到,在目录 hdfs://namenode01.td.com/tmp/flink/savepoints/savepoint-40dcc6-a90008f0f82f下面生成了ID为40dcc6d2ba90f13930abce295de8d038的Job的Savepoint数据。
3.从Savepoint恢复
现在,我们可以停掉Job 40dcc6d2ba90f13930abce295de8d038,然后通过Savepoint命令来恢复Job运行,命令格式如下所示:
bin/flink run -s :savepointPath [:runArgs]
以上面保存的Savepoint为例,恢复Job运行,执行如下命令:
bin/flink run -s hdfs://namenode01.td.com/tmp/flink/savepoints/savepoint-40dcc6-a90008f0f82f flink-app-jobs.jar
可以看到,启动一个新的Flink Job,ID为cdbae3af1b7441839e7c03bab0d0eefd。
4. Savepoint目录结构
下面,我们看一下Savepoint目录下面存储内容的结构,如下所示:
hdfs dfs -ls /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b
Found 5 items
-rw-r--r-- 3 hadoop supergroup 4935 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/50231e5f-1d05-435f-b288-06d5946407d6
-rw-r--r-- 3 hadoop supergroup 4599 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/7a025ad8-207c-47b6-9cab-c13938939159
-rw-r--r-- 3 hadoop supergroup 4976 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/_metadata
-rw-r--r-- 3 hadoop supergroup 4348 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/bd9b0849-aad2-4dd4-a5e0-89297718a13c
-rw-r--r-- 3 hadoop supergroup 4724 2018-09-02 01:21 /flink-1.5.3/flink-savepoints/savepoint-11bbc5-bd967f90709b/be8c1370-d10c-476f-bfe1-dd0c0e7d498a
如上面列出的HDFS路径中,11bbc5是Flink Job ID字符串前6个字符,后面bd967f90709b是随机生成的字符串,然后savepoint-11bbc5-bd967f90709b作为存储此次Savepoint数据的根目录,最后savepoint-11bbc5-bd967f90709b目录下面_metadata文件包含了Savepoint的元数据信息,其中序列化包含了savepoint-11bbc5-bd967f90709b目录下面其它文件的路径,这些文件内容都是序列化的状态信息。
参考
http://shiyanjun.cn/archives/1855.html
https://www.colabug.com/2259405.html
https://ci.apache.org/projects/flink/flink-docs-release-1.7/ops/state/savepoints.html
[Flink原理介绍第四篇】:Flink的Checkpoint和Savepoint介绍的更多相关文章
- Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文
前言 之前也分享了不少自己的文章,但是对于 Flink 来说,还是有不少新入门的朋友,这里给大家分享点 Flink 相关的资料(国外数据 pdf 和流处理相关的 Paper),期望可以帮你更好的理解 ...
- Flink原理、实战与性能优化读书笔记
第一章 ApacheFlink介绍 一.Flink优势 1. 目前唯一同时支持高吞吐.低延迟.高性能的分布式流式数据处理框架 2. 支持事件事件概念 3. 支持有状态计算,保持了事件原本产生的时序性, ...
- Apache Flink on K8s:四种运行模式,我该选择哪种?
1. 前言 Apache Flink 是一个分布式流处理引擎,它提供了丰富且易用的API来处理有状态的流处理应用,并且在支持容错的前提下,高效.大规模的运行此类应用.通过支持事件时间(event-ti ...
- Flink原理(三)——Task(任务)、Operator Chain(算子链)和Slot(资源)
本文是参考官方文档结合自己的理解写的,所引用文献均已指明来源,若侵权请留言告知,我会立马删除.此外,若是表达欠妥的地方,欢迎大伙留言指出. 前言 在上一篇博客Flink原理(二) ——资源一文中已简要 ...
- Flink原理(五)——容错机制
本文是博主阅读Flink官方文档以及<Flink基础教程>后结合自己理解所写,若有表达有误的地方欢迎大伙留言指出. 1. 前言 流式计算分为有状态和无状态两种情况,所谓状态就是计算过程中 ...
- Flink原理(二)——资源
前言 本文主要是想简要说明Flink在集群部署.任务提交.任务运行过程中资源情况,若表述有误欢迎大伙留言分享,非常感谢! 一.集群部署阶段 集群部署这里指的是Flink standalone模式,因为 ...
- Flink 从0到1学习 —— Flink 中如何管理配置?
前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一 ...
- Flink 源码解析 —— 深度解析 Flink 是如何管理好内存的?
前言 如今,许多用于分析大型数据集的开源系统都是用 Java 或者是基于 JVM 的编程语言实现的.最着名的例子是 Apache Hadoop,还有较新的框架,如 Apache Spark.Apach ...
- Flink 源码解析 —— 深度解析 Flink 序列化机制
Flink 序列化机制 https://t.zsxq.com/JaQfeMf 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭 ...
随机推荐
- 项目集成swagger,并暴露指定端点给swagger
项目集成swagger 一:思考: 1.swagger解决了我们什么问题? 传统开发中,我们在开发完成一个接口后,为了测试我们的接口,我们通常会编写单元测试,以测试我们的接口的可用性,或者用postm ...
- upc组队赛5 Election of Evil【搜索】
Election of Evil 题目描述 Dylan is a corrupt politician trying to steal an election. He has already used ...
- 4.Jmeter 快速入门教程(三-2) -- 设置集结点
集合点:简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念,我们可以在需要压力的地方设置集合点, 还拿那个用户和密码的地方,每到输入用户 ...
- 6.Jmeter 参数关联设置
Jmeter的参数关联其实就是参数变量的在不同的采样器(sampler)的存储与传递. 如下我们有一个请求例子. 1. 发起下订单(下订单成功后会返回一个订单Id) 2. 针对该订单进行支付(需要 ...
- java 并发——synchronized
java 并发--synchronized 介绍 在平常我们开发的过程中可能会遇到线程安全性的问题,为了保证线程之间操作数据的正确性,我们第一想到的可能就是使用 synchronized 并且 syn ...
- Java内部类类型
可以在类中的任何位置定义内部类,并在其中编写Java语句.有三种类型的内部类. 内部类的类型取决于位置和声明的方式. 成员内部类 局部内部类 匿名内部类 成员内部类 成员内部类在类中声明的方式与声明成 ...
- 在JMeter测试计划中如何控制业务比例
作者:Selingchen 来源:CSDN 原文:https://blog.csdn.net/selingchen/article/details/47844375
- Eureka 系列(08)心跳续约与自动过期
Eureka 系列(08)心跳续约与自动过期 [TOC] Spring Cloud 系列目录 - Eureka 篇 在上一篇 Eureka 系列(07)服务注册与主动下线 中对服务的注册与下线进行了分 ...
- python 根据字典的键值进行排序
1.利用key排序 d = {'d1':2, 'd2':4, 'd4':1,'d3':3,} for k in sorted(d): print(k,d[k]) d1 2d2 4d3 3d4 1 2. ...
- 关于软件IntelliJ IDEA的使用技巧(四)
二,IntelliJ IDEA的工具栏介绍 2,IntelliJ IDEA菜单栏 (9)Run运行 ✌1.Run'All Features in :src':运行scr中所有的特征 ✌2.Debug ...