题面

其实这道题不用组合数!不用容斥!

只需要一个gcd和无脑找规律(滑稽

乍一看题目,如果单纯求合法三角形的话情况太多太复杂,我们可以从局部入手,最终扩展到整体。

首先考虑这样的情况:

类似地,我们把三角形三个顶点都在网格边界上,且网格内任意一条线都可以把三角形切成两部分的情况,称为完全覆盖。

下面这种就不算:

不难发现每个顶点在格点上的三角形,都有且仅有一个被它完全覆盖的网格。
所以可将原问题转化为:求出矩形中所有子矩形的完全覆盖三角形数。

又因为完全覆盖三角形数只与子矩形大小有关,与其位置无关,

而且手模一下可以发现

一个$nm$的矩形内,大小为$ij$的子矩形个数为$(n-i+1)*(m-j+1)$。

所以接下来只要求解一定长宽矩形内 完全覆盖三角形的的个数即可

然后观察可得 (迄今为止我似乎没有用除了观察之外的方法证明过东西)

如果三角形XYZ完全覆盖矩形ABCD,那么它至少有一端点在ABCD的角上。

那么接下来就可以按照 XYZ有几个端点在矩形角上分类讨论。
设矩形长为i,宽为j。

  • 一个端点在角上

角的选择有4种,三角形另外两端点必在两边上,共有$(i-1)*(j-1)$种。

所以这部分答案为$4*(i-1)*(j-1)$

  • 两个端点在角上

第一种:

答案:\(i-1\)

第二种:

答案:\(j-1\)

第三种:

三角形有一条边与矩形对角线重合。

此时三角形剩下那个端点除了四个角以及它的对边上的格点之外,可以随便放。
那么这条对边(即矩形的一条对角线)上有几个格点呢?

$gcd(i,j)-1$个。(不包括对边的两个端点)

答案:\((i+1)*(j+1)-4-gcd(i,j)+1\)

  • 三个端点在角上

显然4种。

另外,以上三种情况都可以对称过去得到不同的方案,所以$*2$。

化简可得$ans=6ij-2*gcd(i,j)$

复杂度:\(O(mnlog^{m+n})\)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll m,n;
int gcd(int x,int y)
{
if(!y)return x;
return gcd(y,x%y);
}
int main()
{
scanf("%lld%lld",&m,&n);
ll ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans+=(6*i*j-2LL*gcd(i,j))*(n-i+1)*(m-j+1);
cout<<ans<<endl;
return 0;
}

本文主要参考:https://www.luogu.org/blog/suwakow/solution-p3166

[CQOI2014]数三角形 题解(找规律乱搞)的更多相关文章

  1. [CQOI2014]数三角形 题解(组合数学+容斥)

    [CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...

  2. Codeforces 193E - Fibonacci Number(打表找规律+乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 蠢蠢的我竟然第一眼想套通项公式?然鹅显然 \(5\) 在 \(\bmod 10^{13}\) 意义下并没有二次剩余--我真是活回去了... ...

  3. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  5. 【BZOJ3505】[Cqoi2014]数三角形 组合数

    [BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...

  6. 【bzoj3505】[Cqoi2014]数三角形

    [bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...

  7. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  8. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  9. 3505: [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1324  Solved: 807[Submit][Statu ...

随机推荐

  1. ELK Stack 7.1.1之集群搭建

    一. 环境准备:3台Linux服务器,系统为CentOS 7.5 角色划分:3台机器全部安装jdk1.8,全部安装elasticsearch (后续都简称为es集群) 主节点上需要安装kibana与l ...

  2. Android 模糊搜索rawquery bind or column index out of range: handle 0x2fb180 报错

    做模糊搜索时,出现了  bind or column index out of range: handle 0x2fb180 报错 public Cursor getTitle(String word ...

  3. win10 解决telnet不是内部或外部命令的方案

    1.Telnet用于远程操作互联网中的设备或终端计算机服务器,可以有效的减少现场操作的麻烦.因为设备或终端是遍布整个省或市,有的甚至是国外,如何高效的处理问题是当务之急,除了telnet还可以ssh使 ...

  4. 解析crontab php自动运行的方法

    crontab是linux自带的一个命令 使php自动运行的方法php自动运行有很多方法,这里分以下DZ以及一些通过系统完成的方法和直接触发运行驻留系统的方法.Discuz后台有个计划任务,可以使ph ...

  5. Install Apache 2.2.15, MySQL 5.5.34 & PHP 5.5.4 on RHEL/CentOS 6.4/5.9 & Fedora 19-12 [转]

    Step 1: Installing Remi Repository ## Install Remi Repository on Fedora , , , , ## rpm -Uvh http://d ...

  6. float不完整带来的IE7下的不兼容

    这种原因是因为搜索用了float:right;添加报考院校和导入文件没有用float; 解决的方法是:1.给添加报考院校和导入文件分别添加float:left;2.把搜索那部分代码写在添加报考院校和导 ...

  7. 12.Jmeter 快速入门教程 -- 监控被测资源

    写在前面的话, 作者认为jmeter的监控被测服务器资源只是基本可用, 还好习惯了linux的各种命令和工具,所以也基本不用担心什么了.但是有了图形化的监控, 也方便给领导出报告. 怎么说也是不错的. ...

  8. hql例子

    /** * 根据搜索条件查询商品(带缓存) */ public List<ResultInfo> getSearchGoodsList(GoodsTypeCondtionBizBean c ...

  9. Android/IOS APP界面设计之尺寸规范

    1.尺寸以及分辨率 iPhone的界面尺寸不用多说,640*960是基本OK的,也可以是适应5S的640*1136,马上iPhone 6也快来了(随便吐槽一下网上曝的真机谍照,真是丑到离谱...),只 ...

  10. strcoll - 用当前的区域选项来比较两个字符串

    总览 (SYNOPSIS) #include <string.h> int strcoll(const char *s1, const char *s2); 描述 (DESCRIPTION ...