luoguP3261_[JLOI2015]城池攻占
题意
有一棵树\(n\)个节点,每个节点有一个防御值,以及两个属性,表示一个骑士占领该节点后攻击值是加还是乘,有\(m\)个骑士,有初始位置和初始攻击值,如果攻击值大于该节点的防御值,就能占领该节点,然后更新攻击值,走到父节点,如果攻击值小于防御值,骑士就会死在该节点。
问每个骑士能占领多少个节点,以及每个节点分别有多少个骑士死在那里。
分析
- 第一个问题,考虑对每一个节点,如果我们能知道所有能到达该节点的骑士以及他们的攻击力,显然攻击力小于该节点防御值的就是死在这个节点的骑士。
- 这部分骑士分为两部分,第一部分是初始位置就在这个节点的,第二部分是从下面上来的,这部分可以用dfs来求出,然后考虑用可并堆来维护这些骑士的信息。
- 显然将以该节点为初始位置的骑士和dfs后回溯上来的骑士对应的可并堆进行合并,然后将攻击力小于防御值的骑士去掉,维护大根堆,显然这些骑士也不可能再对上面的节点有贡献。
- 第二个问题,由于骑士走的肯定是树上的一个单向路径,所以只需要记录初始位置的深度和死亡位置的深度即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e5+50;
struct Edge{
int v,next;
}e[N],ct[N];
int cnt1,cnt2,head1[N],head2[N];
void init(){
cnt1=0;
cnt2=0;
memset(head1,-1,sizeof(head1));
memset(head2,-1,sizeof(head1));
}
void add(int u,int v,bool tr){
if(tr){
e[cnt1]=Edge{v,head1[u]};
head1[u]=cnt1++;
}else{
ct[cnt2]=Edge{v,head2[u]};
head2[u]=cnt2++;
}
}
int n,m,fa,fi[N],sis[N],k[N],ls[N],rs[N],dis[N],dep[N];
ll f[N],ai[N],vi[N],g[N],ad[N],mu[N];
//对a子树计算标记
void fun(int a,ll add,ll mul){
if(a){
g[a]*=mul;
g[a]+=add;
ad[a]*=mul;
ad[a]+=add;
mu[a]*=mul;
}
}
void pushdown(int a){
fun(ls[a],ad[a],mu[a]);
fun(rs[a],ad[a],mu[a]);
ad[a]=0;
mu[a]=1;
}
int merge(int a,int b){
if(!a || !b){
return a+b;
}
pushdown(a);
pushdown(b);
if(g[a]>g[b]){
swap(a,b);
}
rs[a]=merge(rs[a],b);
if(dis[ls[a]]<dis[rs[a]]){
swap(ls[a],rs[a]);
}
dis[a]=dis[rs[a]]+1;
return a;
}
int pop(int a){
pushdown(a);
return merge(ls[a],rs[a]);
}
int dfs(int u,int d){
//因为是小根堆,这里是a=0,如果是大根堆,a=u ???
int a=0;
dep[u]=d;
//合并在这个城池开始的所有骑士
for(int i=head2[u];i!=-1;i=ct[i].next){
int v=ct[i].v;
a=merge(a,v);
}
//合并能从下面上来到这个城池的骑士
for(int i=head1[u];i!=-1;i=e[i].next){
int v=e[i].v;
a=merge(a,dfs(v,d+1));
}
//攻击力不够的骑士死在这个城池,记录死的位置,通过深度可知占领的城池数
while(a && g[a]<f[u]){
k[a]=u;
sis[u]++;
a=pop(a);
}
//更新攻击力,回溯到上一层城池进行攻击
if(ai[u]){
fun(a,0,vi[u]);
}else{
fun(a,vi[u],1);
}
return a;
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lld",&f[i]);
}
init();
for(int i=2;i<=n;i++){
scanf("%d%lld%lld",&fa,&ai[i],&vi[i]);
add(fa,i,true);
}
for(int i=1;i<=m;i++){
scanf("%lld%d",&g[i],&fi[i]);
add(fi[i],i,false);
}
dfs(1,1);
for(int i=1;i<=n;i++){
printf("%d\n",sis[i]);
}
for(int i=1;i<=m;i++){
printf("%d\n",dep[fi[i]]-dep[k[i]]);
}
return 0;
}
luoguP3261_[JLOI2015]城池攻占的更多相关文章
- BZOJ_4003_[JLOI2015]城池攻占_可并堆
BZOJ_4003_[JLOI2015]城池攻占_可并堆 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 ...
- 【BZOJ4003】[JLOI2015]城池攻占 可并堆
[BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...
- [bzoj4003][JLOI2015]城池攻占_左偏树
城池攻占 bzoj-4003 JLOI-2015 题目大意:一颗n个节点的有根数,m个有初始战斗力的骑士都站在节点上.每一个节点有一个standard,如果这个骑士的战斗力超过了这个门槛,他就会根据城 ...
- [洛谷P3261] [JLOI2015]城池攻占(左偏树)
不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...
- [JLOI2015]城池攻占
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi &l ...
- [JLOI2015]城池攻占 左偏树
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi &l ...
- BZOJ4003[JLOI2015]城池攻占——可并堆
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, 其中 fi ...
- BZOJ4003 [JLOI2015]城池攻占 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4003 题意概括 题意有点复杂,直接放原题了. 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑 ...
- 【左偏树】【P3261】 [JLOI2015]城池攻占
Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其 ...
随机推荐
- HDU2082 找单词
问题分析 不难想到用母函数做. 令自变量\(x\)的次数就是单词价值,那么答案就是\(x\)的\(1\)次到\(50\)次的系数之和.由于我们只需要处理前\(51\)项,所以暴力多项式相乘即可. 举个 ...
- AcWing:110. 防晒(贪心)
有C头奶牛进行日光浴,第i头奶牛需要minSPF[i]到maxSPF[i]单位强度之间的阳光. 每头奶牛在日光浴前必须涂防晒霜,防晒霜有L种,涂上第i种之后,身体接收到的阳光强度就会稳定为SPF[i] ...
- python3笔记十八:python列表元组字典集合文件操作
一:学习内容 列表元组字典集合文件操作 二:列表元组字典集合文件操作 代码: import pickle #数据持久性模块 #封装的方法def OptionData(data,path): # ...
- 二、PHP链接mongodb
<?php $db=new Mongo("mongodb://sa:sa@localhost:27017"); $c=$db->selectDB("TestD ...
- Oracle9i的详细安装与卸载步骤(有图解)
Oracle9i的安装和卸载详解 本章将以Windows操作系统为例讲述Oracle9i数据库的安装 ...
- Vue复杂路由器的实现
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- CAN-FD协议浅析
引言 随着电子.半导体.通讯等行业的快速发展,汽车电子智能化的诉求也越来越强,消费者希望驾驶动力性.舒适性.经济性以及娱乐性更强的汽车.汽车制造商为了提高产品竞争力,将越来越多的电子控制系统加入到汽车 ...
- Random Initialization for K-Means
K-Means的中心初始化惯用方式是随机初始化.也就是说:从training set中随机挑选出K个 作为中心,再进行下一步的K-Means算法. 这个方法很容易导致收敛到局部最优解,当簇个个数(K) ...
- Delphi中的Free和Nil和freeandnil函数
Delphi中的Free和Nil 在Delphi中释放对象资源时一般用Obj.Free(Obj为一个实例名),不过程Delphi中还有一个FreeAndNil(对象名)函数,那么用哪个好呢?Free和 ...
- java:JQueryReview
Important: 1.id选择器,class选择器,标签选择器: $("#id"); $(".class"); $("标签"); 2.j ...