tensorflow实现一个神经网络简单CNN网络
本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测。
首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载):
mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True)
Extracting data/MNIST/train-images-idx3-ubyte.gz
Extracting data/MNIST/train-labels-idx1-ubyte.gz
Extracting data/MNIST/t10k-images-idx3-ubyte.gz
Extracting data/MNIST/t10k-labels-idx1-ubyte.gz
print("Size of:")
print("- Training-set:\t\t{}".format(len(mnist.train.labels)))
print("- Test-set:\t\t{}".format(len(mnist.test.labels)))
print("- Validation-set:\t{}".format(len(mnist.validation.labels)))
Size of:
- Training-set: 55000
- Test-set: 10000
- Validation-set: 5000
然后开始定义输入数据,利用占位符
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])
# print(x_image.shape) # [n_samples, 28,28,1]
minst数据集中是28*28大小的图片,784就是一张展平的图片(28*28=784)。None表示输入图片的数量不定。类别是0-9总共10个类别,并定义了后面dropout的占位符。x_image又把展平的图片reshape成了28*28*1的形状,因为是灰色图片,所以通道是1.
然后定义几个函数来方便构造网络:
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
# stride [1, x_movement, y_movement, 1]
# Must have strides[0] = strides[3] = 1
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
# stride [1, x_movement, y_movement, 1]
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
truncated_normal函数使得W呈正态分布,标准差为0.1。初始化b为0.1。定义卷积层步数为1,并且周围补0。池化层采用kernel大小为2*2,步数也为2,周围补0。
然后定义CNN神经网络:
## conv1 layer ##
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32 ## conv2 layer ##
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64 ## func1 layer ##
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ## func2 layer ##
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
最后计算损失,使得损失最小。
# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
reduce_mean用于计算均值,用法如下:
tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
Computes the mean of elements across dimensions of a tensor.
# 'x' is [[1., 1.]
# [2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]
完整代码如下:
from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True)
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
# stride [1, x_movement, y_movement, 1]
# Must have strides[0] = strides[3] = 1
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
# stride [1, x_movement, y_movement, 1]
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])
# print(x_image.shape) # [n_samples, 28,28,1]
## conv1 layer ##
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32
## conv2 layer ##
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64
## func1 layer ##
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
## func2 layer ##
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
if i % 50 == 0:
print(compute_accuracy(
mnist.test.images, mnist.test.labels))
tensorflow实现一个神经网络简单CNN网络的更多相关文章
- 基于tensorflow搭建一个神经网络
一,tensorflow的简介 Tensorflow是一个采用数据流图,用于数值计算的 开源软件库.节点在图中表示数字操作,图中的线 则表示在节点间相互联系的多维数据数组,即张量 它灵活的架构让你可以 ...
- Tensorflow之卷积神经网络(CNN)
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...
- 【小白学PyTorch】1 搭建一个超简单的网络
文章目录: 目录 1 任务 2 实现思路 3 实现过程 3.1 引入必要库 3.2 创建训练集 3.3 搭建网络 3.4 设置优化器 3.5 训练网络 3.6 测试 1 任务 首先说下我们要搭建的网络 ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...
- 机器学习与Tensorflow(6)——LSTM的Tensorflow实现、Tensorboard简单实现、CNN应用
最近写的一些程序以及做的一个关于轴承故障诊断的程序 最近学习进度有些慢 而且马上假期 要去补习班 去赚下学期生活费 额.... 抓紧时间再多学习点 1.RNN递归神经网络Tensorflow实现程序 ...
- 用TensorFlow搭建一个万能的神经网络框架(持续更新)
我一直觉得TensorFlow的深度神经网络代码非常困难且繁琐,对TensorFlow搭建模型也十分困惑,所以我近期阅读了大量的神经网络代码,终于找到了搭建神经网络的规律,各位要是觉得我的文章对你有帮 ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络GoogLeNet
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper ...
- TensorFlow.NET机器学习入门【7】采用卷积神经网络(CNN)处理Fashion-MNIST
本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建, ...
- 卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的C ...
随机推荐
- error: must use ‘class’ tag to refer to type ‘XXX’ in this scope
开发环境: Qt Creator 4.8.2 在写程序的时候,遇到了编译器报错 error: must use 'class' tag to refer to type 'XXX' in this s ...
- c# 匿名委托
using System; namespace AnonymousMethod { delegate void ArithmeticOperation(double operand1, double ...
- [php代码审计] 哈希长度拓展攻击
已知: 1. salt的长度. 2. message==“adminadmin”. 3. MD5(salt+message)的值. 求: MD5(salt+message+填充数据+任意字符串)的值. ...
- 通过反射获取方法的参数名称(JDK8以上支持)
方法的参数名,在很多时候我们是需要反射得到的.但是在java8之前,代码编译为class文件后,方法参数的类型是固定的,但参数名称却丢失了,这和动态语言严重依赖参数名称形成了鲜明对比.(java是静态 ...
- dsu on tree 学习笔记
这是一个黑科技,考虑树链剖分后,每个点只会在轻重链之间转化\(log\)次. 考虑暴力是怎么写的,每次枚举一个点,再暴力把子树全部扫一边. \(dsu\ on\ tree.\)的思想就是保留重儿子不清 ...
- vue兄弟组件之前传信
1.使用vuex 2.子传父,父传子 3.使用中央事件总线 1.新建一个js文件,然后引入vue 实例化vue 最后暴露这个实例 2.在要用的组件内引入这个组件 3.通过vueEmit.$emit(' ...
- 阿里HBase的数据管道设施实践与演进
摘要:第九届中国数据库技术大会,阿里巴巴技术专家孟庆义对阿里HBase的数据管道设施实践与演进进行了讲解.主要从数据导入场景. HBase Bulkload功能.HImporter系统.数据导出场景. ...
- git怎样删除未监视的文件untracked files ?
git怎样删除未监视的文件untracked files 需要添加到.gitignore文件 # 删除 untracked files git clean -f # 连 untracked 的目录也一 ...
- atoi()和stoi()函数
C++的字符处理函数,把数字字符串转换成int输出 头文件都是#include<cstring> atoi()的参数是 const char* ,因此对于一个字符串str我们必须调用 c_ ...
- JAVA中short和short相加自动转化为int
精度小于int的数值运算的时候都回被自动转换为int后进行计算 所以,下面的代码会报编译错误 short s1 = 1;short s2 = 1;s1= (s1+s2); 必须改成: short s1 ...