洛谷 - P3803 -【模板】多项式乘法(FFT) - NTT
https://www.luogu.org/problemnew/show/P3803
看别人偏偏就是要用NTT去过。实验证明大概是这样用。求0n的多项式和0m的多项式的乘积。注意MAXN取值。A数组的大小必须足以容纳大于等于A+B总size的最小的2的幂次。干脆就直接取4倍?
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 4e6, mod = 998244353;
inline int pow_mod(ll x, int n) {
ll res;
for(res = 1; n; n >>= 1, x = x * x % mod)
if(n & 1)
res = res * x % mod;
return res;
}
inline int add_mod(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
}
inline int sub_mod(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
}
void NTT(int a[], int n, int op) {
for(int i = 1, j = n >> 1; i < n - 1; ++i) {
if(i < j)
swap(a[i], a[j]);
int k = n >> 1;
while(k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
for(int len = 2; len <= n; len <<= 1) {
int g = pow_mod(3, (mod - 1) / len);
for(int i = 0; i < n; i += len) {
int w = 1;
for(int j = i; j < i + (len >> 1); ++j) {
int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod;
a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t);
w = 1ll * w * g % mod;
}
}
}
if(op == -1) {
reverse(a + 1, a + n);
int inv = pow_mod(n, mod - 2);
for(int i = 0; i < n; ++i)
a[i] = 1ll * a[i] * inv % mod;
}
}
int A[MAXN + 5], B[MAXN + 5];
int pow2(int x) {
int res = 1;
while(res < x)
res <<= 1;
return res;
}
void convolution(int A[], int B[], int Asize, int Bsize) {
int n = pow2(Asize + Bsize - 1);
for(int i = Asize; i < n; ++i)
A[i] = 0;
for(int i = Bsize; i < n; ++i)
B[i] = 0;
NTT(A, n, 1);
NTT(B, n, 1);
for(int i = 0; i < n; ++i)
A[i] = 1ll * A[i] * B[i] % mod;
NTT(A, n, -1);
return;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i <= n; ++i) {
scanf("%d", &A[i]);
A[i] = add_mod(A[i], mod);
}
for(int i = 0; i <= m; ++i) {
scanf("%d", &B[i]);
B[i] = add_mod(B[i], mod);
}
convolution(A, B, n + 1, m + 1);
for(int i = 0; i <= n + m; i++) {
printf("%d%c", A[i], " \n"[i == n + m]);
}
return 0;
}
反向学习FFT!不知道为什么不用反过来呢。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 4e6;
const double PI = acos(-1.0);
struct Complex {
double x, y;
Complex() {}
Complex(double x, double y): x(x), y(y) {}
friend Complex operator+(const Complex &a, const Complex &b) {
return Complex(a.x + b.x, a.y + b.y);
}
friend Complex operator-(const Complex &a, const Complex &b) {
return Complex(a.x - b.x, a.y - b.y);
}
friend Complex operator*(const Complex &a, const Complex &b) {
return Complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
} A[MAXN + 5], B[MAXN + 5];
void FFT(Complex a[], int n, int op) {
for(int i = 1, j = n >> 1; i < n - 1; ++i) {
if(i < j)
swap(a[i], a[j]);
int k = n >> 1;
while(k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
for(int len = 2; len <= n; len <<= 1) {
Complex wn(cos(2.0 * PI / len), sin(2.0 * PI / len)*op);
for(int i = 0; i < n; i += len) {
Complex w(1.0, 0.0);
for(int j = i; j < i + (len >> 1); ++j) {
Complex u = a[j], t = a[j + (len >> 1)] * w ;
a[j] = u + t, a[j + (len >> 1)] = u - t;
w = w * wn;
}
}
}
if(op == -1) {
for(int i = 0; i < n; ++i)
a[i].x = (int)(a[i].x / n + 0.5);
}
}
int pow2(int x) {
int res = 1;
while(res < x)
res <<= 1;
return res;
}
void convolution(Complex A[], Complex B[], int Asize, int Bsize) {
int n = pow2(Asize + Bsize - 1);
for(int i = 0; i < n; ++i) {
A[i].y = 0.0;
B[i].y = 0.0;
}
for(int i = Asize; i < n; ++i)
A[i].x = 0;
for(int i = Bsize; i < n; ++i)
B[i].x = 0;
FFT(A, n, 1);
FFT(B, n, 1);
for(int i = 0; i < n; ++i)
A[i] = A[i] * B[i];
FFT(A, n, -1);
return;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i <= n; ++i) {
scanf("%lf", &A[i].x);
}
for(int i = 0; i <= m; ++i) {
scanf("%lf", &B[i].x);
}
convolution(A, B, n + 1, m + 1);
for(int i = 0; i <= n + m; i++) {
printf("%d%c", (int)A[i].x, " \n"[i == n + m]);
}
return 0;
}
洛谷 - P3803 -【模板】多项式乘法(FFT) - NTT的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷p3803 FFT入门
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
随机推荐
- vue的transition的name作用
记录一下今天在vue的transition中遇到的坑 <!DOCTYPE html> <html> <head> <title>Vue中CSS动画原理& ...
- Java设计模式:23种设计模式全面解析(超级详细)
设计模式(Design Pattern)是前辈们对代码开发经验的总结,是解决特定问题的一系列套路.它不是语法规定,而是一套用来提高代码可复用性.可维护性.可读性.稳健性以及安全性的解决方案. 1995 ...
- yarn与npm对比
https://www.jianshu.com/p/254794d5e741(copy)
- Ubuntu 16.04修改ssh端口
1 安装防火墙 sudo apt-get install ufw启用 sudo ufw enable sudo ufw default deny 作用:开启了防火墙并随系统启动同时关闭所有外部对本机的 ...
- wannalfy 挑战赛8 F 白云的树(树形dp)
链接:https://www.nowcoder.com/acm/contest/57/F 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言524288K 64b ...
- Linux NTP服务器的搭建及client自动更新时间
Network Time Protocol(NTP)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间 ...
- html上传文件
不太懂Html 做备用 html的文件上传分两个 第一个是Html文件 浏览器加载用的 另一个是PHP文件 处理上传文件的 下面是Html文件 叫index.html <html> < ...
- Linux清空文本内容
测试文件:test.txt 第一种: $> test.txt 第二种: $echo "" > test.txt 第三种: $cat /dev/null > tes ...
- RaspberryPI 3b 技术总结(包括Linux)
安装系统,无屏幕,无网线,windows下 第一步当然是把ROM(官方系统)和刷写工具备好,TF卡一张,当然必须有读卡设备. 启动Etcher,将ROM刷入TF卡,这需要挺长一段时间,完毕后将会出现四 ...
- WCF 配置说明
关于WCF中的地址和绑定,需要补充一下. WCF中支持的传输协议包括HTTP.TCP.Peer network(对等网).IPC(基于命名管道的内部进程通信)以及MSMQ(微软消息队列),每个协议对应 ...