给定 n 个节点的树,边有权值。1 号点是根,除了 1 号点外的度数为 1 的节点是叶子。
要求切断所有叶子和 1 号点之间的联系,切断一条边要花费这条边上权值对应的代价,要求总的代价不超过 m。
在满足这个前提下要求切断的边权的最大值最小,求出这个最小值。$n ≤ 10^5$


首先这个最大值肯定二分答案,然后树形DP限制割掉的边不能超过这个二分的边权,设$f[i]$表示在这个限制下该子树内所有叶子断绝与根的联系的最小代价。

于是$f[i]=max(w_{father},\sum\limits_{y}f[y])$。也就是要不然割自己与父亲的边,要不然让所有儿子和自己都断掉。不合法的方案用INF来传递。

然后判一下是否$f[1]\le m$即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+,INF=0x1f1f1f1f;
int n,mid,L,R,m;
struct STOthxORZ{int to,nxt,w;}G[N<<];
int Head[N],tot;
inline void Addedge(int x,int y,int z){
G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot,G[tot].w=z;
G[++tot].to=x,G[tot].nxt=Head[y],Head[y]=tot,G[tot].w=z;
}
int f[N];
#define y G[j].to
inline void dp(int x,int fa,int val){
int ret=;
for(register int j=Head[x];j;j=G[j].nxt)if(y^fa)dp(y,x,G[j].w),ret+=f[y],(ret>=INF)&&(ret=INF);
f[x]=_min((val>mid?INF:val),(ret?ret:INF));
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
while(read(n),read(m),n||m){
memset(Head,,sizeof Head);tot=;L=;R=;
for(register int i=,x,y,z;i<n;++i)read(x),read(y),read(z),Addedge(x,y,z),MAX(R,z);
int tmp=++R;
while(L<R){
memset(f,0x1f,sizeof f);
mid=L+R>>;dp(,,INF);
if(f[]<=m)R=mid;
else L=mid+;
}
printf("%d\n",L==tmp?-:L);
}
return ;
}

hdu3586 Information Disturbing[二分答案+树形DP]的更多相关文章

  1. HDU 3586 二分答案+树形DP判定

    HDU 3586 『Link』HDU 3586 『Type』二分答案+树形DP判定 ✡Problem: 给定n个敌方据点,1为司令部,其他点各有一条边相连构成一棵树,每条边都有一个权值cost表示破坏 ...

  2. BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP

    BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP Description Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的 ...

  3. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  4. 3月28日考试 题解(二分答案+树形DP+数学(高精))

    前言:考试挂了很多分,难受…… --------------------- T1:防御 题意简述:给一条长度为$n$的序列,第$i$个数的值为$a[i]$.现让你将序列分成$m$段,且让和最小的一段尽 ...

  5. BZOJ4985 评分(二分答案+树形dp)

    首先二分答案简化一下问题,现在只有0和1了,要求最后剩下的是1.再简化一下考虑没有已固定的位置怎么做.考虑每个位置由其合并到的位置连边,显然这样形成了一棵三叉树.设f[i]为使得某位置为1其子树至少要 ...

  6. BZOJ2282 SDOI2011消防/NOIP2007树网的核(二分答案+树形dp)

    要求最大值最小容易想到二分答案.首先对每个点求出子树中与其最远的距离是多少,二分答案后就可以标记上一些必须在所选择路径中的点,并且这些点是不应存在祖先关系的.那么如果剩下的点数量>=3,显然该答 ...

  7. [hdu3586]Information Disturbing树形dp+二分

    题意:给出一棵带权无向树,以及给定节点1,总约束为$m$,找出切断与所有叶子节点联系每条边所需要的最小价值约束. 解题关键:二分答案,转化为判定性问题,然后用树形dp验证答案即可. dp数组需要开到l ...

  8. hdu3586 Information Disturbing 树形DP+二分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3586 题目大意:给定n个敌方据点,编号1为司令部,其他点各有一条边相连构成一棵树,每条边都有一个权值c ...

  9. 【题解】hdu 3586 Information Disturbing 二分 树形dp

    题目描述 Information DisturbingTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java ...

随机推荐

  1. 从gopath到go mod的一次尝试

    windows下的尝试: gomod初尝试下载官方包1.11(及其以上版本将会自动支持gomod) 默认GO111MODULE=auto(auto是指如果在gopath下不启用mod)go mod h ...

  2. 积累-T

    emmm,各种知识点都有吧,主要方便自己记 随机修改网页图标 <script> var image=new Array(3); image.length=3; image[1]=" ...

  3. 【AMAD】newspaper -- 爬取/提取新闻网页中的文本,元数据

    动机 简介 用法 源码分析 个人评分 动机 新闻网页,结构大多是类似的. 所以,能不能用一种通用的爬取方法来提取其中的数据? 简介 Newspapaer1受到requests那种简单性API的启发,通 ...

  4. 【VS开发】进程线程及堆栈关系的总结

    进程线程及堆栈关系的总结 突然想到进程的栈和线程的栈,就顺便说一下,线程的栈被自动分配到进程的内存空间中 进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性. ...

  5. Spring中用到了哪些设计模式?

    谈谈Spring中都用到了哪些设计模式? JDK 中用到了那些设计模式?Spring 中用到了那些设计模式?这两个问题,在面试中比较常见.我在网上搜索了一下关于 Spring 中设计模式的讲解几乎都是 ...

  6. SolidWorks学习笔记2草图

    几何约束 显示和隐藏约束 单个直线的约束 绘制一个直线,点击左侧的中的水平或者竖直,, 如果要删除改约束,右键绿色的小矩形,相关被约束的对象变成分红,点击删除即可. 两个对象之间的约束 点击一个对象, ...

  7. ASP.NET Core中使用EasyCaching作为缓存抽象层

    ⒈是什么? 和CacheManager差不多,两者的定位和功能都差不多. EasyCaching主要提供了下面的几个功能 统一的抽象缓存接口 多种常用的缓存Provider(InMemory,Redi ...

  8. 快速部署单节点RancherServer

    已安装 docker,并配置docker国内镜像源 docker version docker pull rancher/rancher:v2.2.0 docker run -d -p 80:80 - ...

  9. Tensorflow常见函数case argmax equal

    常用的函数: tf.argmax(input, axis=None, name=None, dimension=None) input:输入Tensor axis:0表示按列,1表示按行 name:名 ...

  10. python 写接口供外部调用

    .py: import requests import urllib2 import commands import subprocess def check(): status, msg = com ...