题目描述

由于出题人赶时间所以没办法编故事来作为背景。
一开始有$n$个苹果,$m$个人依次来吃苹果,第$i$个人会尝试吃$u_i$或$v_i$号苹果,具体来说分三种情况。
$\bullet 1.$两个苹果都还在,那么这个人将随便选一个苹果吃了。
$\bullet 2.$只有一个苹果,那么这个人将吃掉这个苹果。
$\bullet 3.$都不在了,这个人吃不到苹果就走了。
请问有多少对苹果$(i,j)(i<j)$满足它们两个都幸存下来的概率$>0$。


输入格式

第一行两个数$n,m$。
接下来$m$行,每行两个数$u_i,v_i$。


输出格式

一个数表示答案。


样例

样例输入:

4 3
1 2
3 4
2 3

样例输出:

1


数据范围与提示

样例解释:

只有$(1,4)$满足条件。

数据范围:

对于测试点$1\sim 5$:$n,m\leqslant 20$。
对于测试点$5\sim 8$:若把苹果看做点,人看做边,那么会形成一棵树。
对于测试点$9\sim 15$:$m\leqslant 400$。
对于测试点$16\sim 25$:无特殊限制。
对于所有的数据,$n\leqslant 400,m\leqslant 5\times 10^4$。


题解

考虑一个类似$DP$的做法,定义$f_k(S)$表示$k$个人来过之后,$S$集合的苹果是否都还没有被吃的概率,那么我们可以列出状态转移方程:

$\alpha.u_i,v_i\in S,f_k(S)=0$,都在这个集合肯定不行,因为这两个苹果不能共同存活。

$\beta.u_i\in S,f_k(S)=f_{k-1}(S\cup\{u_i\})$,相当与上一次可以有它,但是这一次就不能有了。

$\gamma.v_i\in S,f_k(S)=f_{k-1}(S\cup\{v_i\})$,同上。

$delta.u_i,v_i\notin S,f_k(S)=f_{k-1}(S)$,如果都不在,肯定没问题。

但是我们最后可能会得到好多的集合,选最小的一个?

肯定不行,那么我们考虑在转化一下思路。

逆着推,那么状态转移方程就变成了:

$\alpha.u_i,v_i\in S$,推不动了。

$\beta.u_i\in S,f_k(S\cup\{u_i\})=f_{k+1}(S)$。

$\gamma.v_i\in S,f_k(S\cup\{v_i\})=f_{k+1}()S$。

$delta.u_i,v_i\notin S,f_k(S)=f_{k+1}(S)$。

初始值$f_m(i)=1$。

时间复杂度:$\Theta(n\times n+n^2)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n,m;
bool vis[401];
pair<int,int> e[50001];
bool bit[401][401];
int ans;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].first,&e[i].second);
for(int i=1;i<=n;i++)
{
bit[i][i]=1;
for(int j=m;j;j--)
{
if(bit[i][e[j].first]&&bit[i][e[j].second])vis[i]=1;
if(bit[i][e[j].first]||bit[i][e[j].second])bit[i][e[j].first]=bit[i][e[j].second]=1;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
if(vis[i]||vis[j]||bit[i][k]&&bit[j][k])goto nxt;
ans++;
nxt:;
}
printf("%d",ans>>1);
return 0;
}

rp++

[CSP-S模拟测试]:题(DP)的更多相关文章

  1. [CSP-S模拟测试]:题(DP+数学)

    题目描述 出个题就好了.这就是出题人没有写题目背景的原因.你在平面直角坐标系上.你一开始位于$(0,0)$.每次可以在上/下/左/右四个方向中选一个走一步.即:从$(x,y)$走到$(x,y+1),( ...

  2. noi2019模拟测试赛(四十七)

    noi2019模拟测试赛(四十七) T1与运算(and) 题意: ​ 给你一个序列\(a_i\),定义\(f_i=a_1\&a_2\&\cdots\&a_i\),求这个序列的所 ...

  3. [考试反思]1003csp-s模拟测试58:沉淀

    稳住阵脚. 还可以. 至少想拿到的分都拿到了,最后一题的确因为不会按秩合并和线段树分治而想不出来. 对拍了,暴力都拍了.挺稳的. 但是其实也有波折,险些被卡内存. 如果内存使用不连续或申请的内存全部使 ...

  4. csp-s模拟测试98

    csp-s模拟测试98 $T1$??不是我吹我轻松手玩20*20.$T2$装鸭好像挺可做?$T3$性质数据挺多提示很明显? $One$ $Hour$ $Later$ 这$T1$什么傻逼题真$jb$难调 ...

  5. csp-s模拟测试97

    csp-s模拟测试97 猿型毕露.水题一眼秒,火题切不动,还是太菜了. $T1$看了一会儿感觉$woc$期望题$T1??$假的吧??. $T2$秒. $T3$什么玩意儿. 40 01:24:46 00 ...

  6. csp-s模拟测试95

    csp-s模拟测试95 去世场祭. $T1$:这不裸的除法分块吗. $T2$:这不裸的数据结构优化$Dp$吗. $T3$:这不裸的我什么都不会搜索骗$30$分吗. 几分钟后. 这除法分块太劲了..(你 ...

  7. csp-s模拟测试93

    csp-s模拟测试93 自闭场. $T1$想到$CDQ$,因为复杂度少看见一个$0$打了半年还用了$sort$直接废掉,$T2$,$T3$直接自闭暴力分都没有.考场太慌了,心态不好. 02:07:34 ...

  8. csp-s模拟测试92

    csp-s模拟测试92 关于$T1$:最短路这一定建边最短路. 关于$T2$:傻逼$Dp$这一定线段树优化$Dp$. 关于$T3$:最小生成树+树P+换跟一定是这样. 深入(?)思考$T1$:我是傻逼 ...

  9. csp-s模拟测试91

    csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...

随机推荐

  1. c# 动态加载tlb为程序集

    private enum RegKind { RegKind_Default = , RegKind_Register = , RegKind_None = } [DllImport("ol ...

  2. Java ——JDBC数据库编程

    数据库分类 关系型数据库:以表来存放数据的,数据与数据之间的关系通过表之间的连接体现 面向对象的数据库:保存的是对象本身 其它 数据库:数据库管理系统中创建一个个的保存数据的单位 数据是保存在数据库的 ...

  3. python每日一练:0001题

    第 0001 题:做为 Apple Store App 独立开发者,你要搞限时促销,为你的应用生成激活码(或者优惠券),使用 Python 如何生成 200 个激活码(或者优惠券)? import o ...

  4. C语言1-2019级秋季作业第一周作业

    1.你对软件工程专业或者计算机科学与技术专业了解是怎样? 软件工程专业是指对计算机的软件方面灵活掌控,开发软件的工程.软件工程其中会用到计算机科学.数学方面构建模型与算法:软件工程的目标就是开发出能够 ...

  5. 对PInvoke函数函数调用导致堆栈不对称。原因可能是托管的 PInvoke 签名与非托管的目标签名不匹配。

    C#引入外部非托管类库时,有时候会出现“对PInvoke函数调用导致堆栈不对称.原因可能是托管的 PInvoke 签名与非托管的目标签名不匹配”的报错. 通常在DllImport标签内加入属性Call ...

  6. 在react中用装饰器来装饰connect

    假设我们在react中有如下header组件: import React, { PureComponent } from 'react'; import { connect } from 'react ...

  7. 搜索(DFS)---好友关系的连通分量数目

    好友关系的连通分量数目 547. Friend Circles (Medium) Input: [[1,1,0], [1,1,0], [0,0,1]] Output: 2 Explanation:Th ...

  8. java SSM框架 代码生成器 快速开发平台 websocket即时通讯 shiro redis

    A代码编辑器,在线模版编辑,仿开发工具编辑器,pdf在线预览,文件转换编码 B 集成代码生成器 [正反双向](单表.主表.明细表.树形表,快速开发利器)+快速表单构建器 freemaker模版技术 , ...

  9. vue传值(小demo)

    vue+element ui实现的.解释大多在代码中(代码臭且长,有错误请指正)-- 代码如下: <template>  <div class="userList" ...

  10. vue实现PC端调用摄像头拍照人脸录入、移动端调用手机前置摄像头人脸录入、及图片旋转矫正、压缩上传base64格式/文件格式

    进入正题 1. PC端调用摄像头拍照上传base64格式到后台,这个没什么花里胡哨的骚操作,直接看代码 (canvas + video) <template> <div> &l ...