BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
#include<bits/stdc++.h>
#define maxn 1040000
#define M 1000001
#define inf 0x7f7f7f7f
#define ll long long
using namespace std;
ll mod = 1000000007;
void setIO(string s)
{
string in=s+".in";
freopen(in.c_str(),"r",stdin);
}
map<int,ll>ansmu;
int cnt;
bool vis[maxn];
int prime[maxn], mu[maxn];
ll sumv[maxn];
ll qpow(ll base,ll k)
{
ll tmp=1;
while(k)
{
if(k&1) tmp=tmp*base%mod;
base=base*base%mod;
k>>=1;
}
return tmp;
}
void Linear_shaker()
{
mu[1]=1;
int i,j;
for(i=2;i<=M;++i)
{
if(!vis[i]) prime[++cnt]=i, mu[i]=-1;
for(j=1;j<=cnt&&1ll*i*prime[j]<=M;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(i=1;i<=M;++i) sumv[i]=(sumv[i-1]+mu[i]+mod)%mod;
}
ll get(ll n)
{
if(n<=M) return sumv[n];
if(ansmu[n]) return ansmu[n];
ll i,j,re=0;
for(i=2;i<=n;i=j+1)
{
j=(n/(n/i));
re=(re+(j-i+1)%mod*get(n/i)%mod+mod)%mod;
}
return ansmu[n]=(1ll-re+mod)%mod;
}
int main()
{
// setIO("input");
ll n,k,L,R,i,j,re=0;
scanf("%lld%lld%lld%lld",&n,&k,&L,&R);
L = (L - 1) / k, R = R / k;
Linear_shaker();
for(i=1;i<=R;i=j+1)
{
j=min(R/(R/i), L/i?L/(L/i):inf);
re=(re+qpow(R/i-L/i, n) * (get(j)-get(i-1)+mod)%mod)%mod;
}
printf("%lld\n",re);
return 0;
}
BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛的更多相关文章
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛
link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
随机推荐
- 2019 Nanchang Onsite
D.Interesting Series F(n)实际上是一个等比数列的和,将它从递推式转变为通项公式(a^n-1)/(a-1),这里只需要确定n就可以. 题目要求选取k大小的所有子集的答案求和,可以 ...
- UI自动化之特殊处理三(日期控件\表格\富文本)
日期控件\表格\富文本也是一些常遇到的需要特殊处理的定位 目录 1.日期控件 2.表格 3.富文本 1.日期控件 第一种:输入框属性为:readonly="readonly" # ...
- appium xpath元素定位
1.id定位 写法:driver.find_element_by_id("这里是resource-id") 2.name定位 name定位就是通过UI Automator工具查看的 ...
- 如何让字典保持有序---Python数据结构与算法相关问题与解决技巧
实际案例: 某编程竞赛系统,对参赛选手编程解体进行计时,选手完成题目后,吧该选手解体用时记录到字典中,以便赛后按选手名查询成绩 {'Lilei':(2,43),'HanMei':(5,52),'Jim ...
- Spring Boot & Restful API 构建实战!
作者:liuxiaopeng https://www.cnblogs.com/paddix/p/8215245.html 在现在的开发流程中,为了最大程度实现前后端的分离,通常后端接口只提供数据接口, ...
- 【洛谷p2239】螺旋矩阵
关于题前废话: 这道题的数据范围过于强大了qwq,显然如果我们开一个30000*30000的二维数组来模拟,显然首先就开不下这么大的数组,然后暴力搜索的话也会爆掉,所以直接模拟显然是一个不正确的选择( ...
- 靶形数独 (dfs+预处理+状态压缩)
#2591. 「NOIP2009」靶形数独 [题目描述] 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们 ...
- 25、前端知识点--webpack篇之面试考点
前端面试之webpack篇 https://blog.csdn.net/sinat_17775997/article/details/78122999 关于webpack的面试题 随着现代前端开发的复 ...
- Windows下的vue-devtools工具的安装
详细教程在这个链接里: https://www.cnblogs.com/xqmyhome/p/10972772.html
- Jquery Ajax简单封装(集中错误、请求loading处理)
Jquery Ajax简单封装(集中错误.请求loading处理) 对Jquery Ajax做了简单封装,错误处理,请求loading等,运用到项目中集中处理会很方便. 技术层面没有什么好说的,请求是 ...