求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$
 
$\Rightarrow \sum_{i=\frac{L}{k}}^{\frac{R}{k}}\sum_{i'=\frac{L}{k}}^{\frac{R}{k}}....[gcd_{i=1}^{n}(i)==1]$
 
$\Rightarrow \sum_{i=\frac{L}{k}}^{\frac{R}{k}}\sum_{i'=\frac{L}{k}}^{\frac{R}{k}}....\sum_{d|gcd_{i=1}^{n}(i)}\mu(d)$
 
$\Rightarrow\sum_{d=1}^{\frac{R}{d}}\mu(d)(\left \lfloor \frac{R}{kd} \right \rfloor-\left \lfloor \frac{L-1}{kd} \right \rfloor)^n$
 
用杜教筛算莫比乌斯函数前缀和,整除分块算一下就行.
#include<bits/stdc++.h>
#define maxn 1040000
#define M 1000001
#define inf 0x7f7f7f7f
#define ll long long
using namespace std;
ll mod = 1000000007;
void setIO(string s)
{
string in=s+".in";
freopen(in.c_str(),"r",stdin);
}
map<int,ll>ansmu;
int cnt;
bool vis[maxn];
int prime[maxn], mu[maxn];
ll sumv[maxn];
ll qpow(ll base,ll k)
{
ll tmp=1;
while(k)
{
if(k&1) tmp=tmp*base%mod;
base=base*base%mod;
k>>=1;
}
return tmp;
}
void Linear_shaker()
{
mu[1]=1;
int i,j;
for(i=2;i<=M;++i)
{
if(!vis[i]) prime[++cnt]=i, mu[i]=-1;
for(j=1;j<=cnt&&1ll*i*prime[j]<=M;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(i=1;i<=M;++i) sumv[i]=(sumv[i-1]+mu[i]+mod)%mod;
}
ll get(ll n)
{
if(n<=M) return sumv[n];
if(ansmu[n]) return ansmu[n];
ll i,j,re=0;
for(i=2;i<=n;i=j+1)
{
j=(n/(n/i));
re=(re+(j-i+1)%mod*get(n/i)%mod+mod)%mod;
}
return ansmu[n]=(1ll-re+mod)%mod;
}
int main()
{
// setIO("input");
ll n,k,L,R,i,j,re=0;
scanf("%lld%lld%lld%lld",&n,&k,&L,&R);
L = (L - 1) / k, R = R / k;
Linear_shaker();
for(i=1;i<=R;i=j+1)
{
j=min(R/(R/i), L/i?L/(L/i):inf);
re=(re+qpow(R/i-L/i, n) * (get(j)-get(i-1)+mod)%mod)%mod;
}
printf("%lld\n",re);
return 0;
}

  

BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛的更多相关文章

  1. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  2. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  5. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

  6. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  7. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  8. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

随机推荐

  1. Powershell 邮件发送

    目录 目录 前言 Send-MailMessage NETMail 使用OutLook发送邮件 前言 最近领导想在winServer2012上搞个自动发送邮件的计划任务,下面有几种发送邮件的方式. 如 ...

  2. c# WPF——完成一个简单的百度贴吧爬虫客户端

    话不多说先上图 爬取10页大概500个帖子大概10s,500页2w多个帖子大概2min,由此可见性能并不是特别好,但是也没有很差. 好了话不多说,我们来一步一步实现这么个简易的客户端. 1.创建项目 ...

  3. sync_binlog innodb_flush_log_at_trx_commit 深入理解

    innodb_flush_log_at_trx_commit和sync_binlog 两个参数是控制MySQL 磁盘写入策略以及数据安全性的关键参数.本文从参数含义,性能,安全角度阐述两个参数为不同的 ...

  4. python自动化测试接口测试http请求报404的其中一个坑

    在敲代码的路上 ,总是会遇到报错找半天原因,最后发现是个低级错误的时候! 这不今天为了这个错误找了半天原因.......... http请求接口测试中报404我遇到的大部分都是url的问题: 但是今天 ...

  5. OO第三单元单元总结

    目录 JML知识梳理 部署JMLUnitNG/JMLUnit 按照作业梳理自己的架构设计,并特别分析迭代中对架构的重构 按照作业分析代码实现的bug和修复情况 阐述对规格撰写和理解上的心得体会 JML ...

  6. 前端005/React生命周期

    ES6中React生命周期 一.React生命周期 React生命周期主要包括三个阶段:初始化阶段.运行中阶段和销毁阶段. 在React不同的生命周期里,会依次触发不同的钩子函数. 二.React的生 ...

  7. Spring Boot 中的 Tomcat 是如何启动的?

    作者:木木匠 https://my.oschina.net/luozhou/blog/3088908 我们知道 Spring Boot 给我们带来了一个全新的开发体验,让我们可以直接把 Web 程序打 ...

  8. [2019南京网络赛D题]Robots

    题目链接 2019.9.2更新 第二天睡醒想了想发现好像搜一遍就可以过,赛时写的花里胡哨的还错了,太菜了QAQ #include<bits/stdc++.h> using namespac ...

  9. framebuffer设备驱动分析

    一.设备驱动相关文件 1.1. 驱动框架相关文件 1.1.1. drivers/video/fbmem.c a. 创建graphics类.注册FB的字符设备驱动 fbmem_init(void) { ...

  10. OpenCV-----Numpy数组

    Nunmpy数组包含: 强大的N维数组对象 复杂的(广播)功能 集成C / C ++和Fortran代码的工具 有用的线性代数,傅立叶变换和随机数功能 遍历与修改数组中的所有像素点 #对所有像素进行循 ...