CF1260C Infinite Fence 题解(扩欧)
题目地址
题目大意
现有\(10^{100}\)块木板需要涂漆,第x块如果是x是a的倍数,则涂一种颜色,是b的倍数,则涂另一种颜色。如果既是a又是b的倍数,那么两种颜色都可以涂;如果连续有k块板的颜色是一样的,则输出REBEL,否则输出OBEY。问是否能避免被处死。我们肯定优先使不被处死。
Solution
一周前被这个题目吊打,一周后吊打这个题目
令 \(a < b\)。b染的色就会是 \(1b,2b,...,kb\) 这些格子,而最长的颜色段应该是由 \(a\) 的倍数组成的,而且一定是在两个 \(b\) 的倍数之间。两个 \(b\) 的倍数间有 \(b-1\) 个格子,是固定的,想要让这中间 \(a\) 的倍数尽可能多,就要让段 \(a\) 的倍数中的第一个数离上一个 \(b\) 的倍数最近。假设这个距离为 \(c\),那么就相当于满足方程:
\]
(这不就是扩展欧几里得吗!!!)别激动,我们只要考虑当这个方程有解时,\(c\) 可以取的最小的正整数是多少。所以这是裴蜀定理。因为要使这个方程有解,就要满足 \(gcd(a,b)|c\) 所以 \(c\) 最小取 \(gcd(a,b)\)
处理一下细节,最长的连续的颜色就会是 (b-gcd(a,b)-1)/a)+1
(先单独算上 \(gcd(a,b)\) 这个位置的这个 \(1\),后面这段每 \(a\) 个数就有一个 \(1\))
Code
Talk is cheap.Show me the code.
#include<bits/stdc++.h>
using namespace std;
inline int read() {
int x=0,f=1; char ch=getchar();
while(ch<'0' || ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); }
return x * f;
}
int a,b,K;
int gcd(int a,int b) {
return (b==0?a:gcd(b,a%b));
}
void work() {
a = read(), b = read(), K = read();
if(a>b) swap(a,b);
printf("%s\n",(((b-gcd(a,b)-1)/a)+1<K?"OBEY":"REBEL"));
}
int main()
{
int T = read();
while(T--) work();
return 0;
}
Summary
这道题好水呀,注意细节就OK啦
CF1260C Infinite Fence 题解(扩欧)的更多相关文章
- CF1182F Maximum Sine【类欧,扩欧】
题目链接:洛谷 题目描述:求整数$x\in [a,b]$使得$|2px \ mod \ 2q-q|$最小,如果有多个$x$输出最小的. 数据范围:$1\leq a,b,p,q\leq 10^9$ 第一 ...
- 【POJ】2115 C Looooops(扩欧)
Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
- 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]
传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...
- 【洛谷】【扩欧】P1516 青蛙的约会
[题目描述] 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有 ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- Educational Codeforces Round 77 (Rated for Div. 2) C. Infinite Fence
C. Infinite Fence 题目大意:给板子涂色,首先板子是顺序的,然后可以涂两种颜色,如果是r的倍数涂成红色,是b的倍数涂成蓝色, 连续的k个相同的颜色则不能完成任务,能完成任务则输出OBE ...
- 【POJ】 1061 青蛙的约会(扩欧)
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119148 Accepted: 25070 Descript ...
- 【NOI 2018】屠龙勇士(扩欧)
题意理解错了... 一把剑打一条龙,打了$x$次后如果龙不死,你就Game Over了. 显然,面对每条龙使用的剑是固定的,如果所有龙中有一条没打死你就挂了. 可以知道,可行的答案集合就是所有龙的可行 ...
- 【POJ】1061 青蛙的约会 / 【BZOJ】1477(扩欧)
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119148 Accepted: 25070 Descript ...
随机推荐
- Promethus
https://blog.csdn.net/zl1zl2zl3/article/details/74332437
- GTX 1060 3GB 能否使用DeepFaceLab ?
大部分人都知道跑换脸软件对电脑配置的要求比较高.所以当你想要开始玩之前都会有一个疑问:我的电脑能跑起来了么?或者我的电脑能跑那个模型? 之前写过一篇750 1G显卡如何玩deepfakes的文章.今天 ...
- C#通用类库
http://www.cnblogs.com/feiyangqingyun/archive/2010/12/20/1911630.html
- sql语句实现行转列的3种方法实例
sql语句实现行转列的3种方法实例 一般在做数据统计的时候会用到行转列,假如要统计学生的成绩,数据库里查询出来的会是这样的,但这并不能达到想要的效果,所以要在查询的时候做一下处理,下面话不多说了,来一 ...
- Oracle 无备份情况下的恢复--控制文件/数据文件
13.3无备份恢复控制文件 没有备份恢复控制文件其实就是在nomount状态,create control创建一个新的控制文件. dba必须知道4个信息才能正确的创建:数据库名.在线日志路径及其大小. ...
- mybatis源码级别深度剖析
mybatis 3.x源码深度解析与最佳实践 Mybatis源码解析优秀博文
- [Git] 026 config 命令的补充
少废话,上例子 1. 让命令更醒目 $ git config --global color.ui true 2. 偷懒 $ git config --global alias.st status 使用 ...
- CentOS 7.6 RPM方式安装Oracle19c的过程
1. 下载需要的安装包: 1.1 preinstall http://yum.oracle.com/repo/OracleLinux/OL7/latest/x86_64/getPackage/orac ...
- 首次全备及事务备份对数据库的影响,2014 SpexSql log评估版探索
参考:https://www.cnblogs.com/gered/p/9882367.html 关键词:解析事务日志 新建数据库test3,然后查看日志文件,382行记录 SELECT min([Be ...
- CentOS7 硬盘检测
一.测试硬盘健康状态 安装相关工具:yum -y install smartmontools SMART是一种磁盘自我分析检测技术,早在90年代末就基本得到了普及每一块硬盘(包括IDE.SCSI),在 ...