问题描述

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

输入格式

* Line 1: Four space-separated integers: N, T, S, and E

* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

输出格式

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

样例输入

2 6 6 4

11 4 6

4 4 8

8 4 9

6 6 8

2 6 9

3 8 9

样例输出

10

题目大意

给出一张无向连通图,求S到E经过k条边的最短路。

解析

倍增Floyd模版题。利用矩阵快速幂的形式可以在\(log\)的时间内处理经过k条路径的最短路。

虽然一共有1000000个点,但是因为只有100条边,可以直接用100条边的端点建图,离散化编号即可。

代码

#include <iostream>
#include <cstdio>
#define int long long
#define N 1000002
using namespace std;
const int inf=1<<30;
struct Matrix{
int a[500][500];
}S;
int n,m,s,t,i,j,id[N],cnt;
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
Matrix mult(Matrix a,Matrix b)
{
Matrix c;
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++) c.a[i][j]=inf;
}
for(int k=1;k<=cnt;k++){
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++) c.a[i][j]=min(c.a[i][j],a.a[i][k]+b.a[k][j]);
}
}
return c;
}
Matrix poww(Matrix a,int b)
{
b--;
Matrix ans=a,base=a;
while(b){
if(b&1) ans=mult(ans,base);
base=mult(base,base);
b>>=1;
}
return ans;
}
signed main()
{
n=read();m=read();s=read();t=read();
for(i=1;i<=2*m;i++){
for(j=1;j<=2*m;j++) S.a[i][j]=inf;
}
for(i=1;i<=m;i++){
int w=read(),u=read(),v=read();
if(!id[u]) id[u]=++cnt;
if(!id[v]) id[v]=++cnt;
S.a[id[u]][id[v]]=S.a[id[v]][id[u]]=w;
}
Matrix ans=poww(S,n);
cout<<ans.a[id[s]][id[t]]<<endl;
return 0;
}

[洛谷P2886] 牛继电器Cow Relays的更多相关文章

  1. 洛谷 [P2886] 牛继电器Cow Relays

    最短路 + 矩阵快速幂 我们可以改进矩阵快速幂,使得它适合本题 用图的邻接矩阵和快速幂实现 注意 dis[i][i] 不能置为 0 #include <iostream> #include ...

  2. 洛谷P2886牛继电器

    传送门啦 倍增 $ Floyd $ 注意结构体里二维数组不能开到 $ 2000 $ #include <iostream> #include <cstdio> #include ...

  3. P2886 [USACO07NOV]牛继电器Cow Relays

    题目描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race ...

  4. [USACO07NOV]牛继电器Cow Relays (最短路,DP)

    题目链接 Solution 非正解 似乎比较蛇啊,先个一个部分分做法,最短路+\(DP\). 在求最短路的堆或者队列中存储元素 \(dis_{i,j}\) 代表 \(i\) 这个节点,走了 \(j\) ...

  5. 洛谷P2886 [USACO07NOV]牛继电器Cow Relays

    题意很简单,给一张图,把基本的求起点到终点最短路改成求经过k条边的最短路. 求最短路常用的算法是dijkstra,SPFA,还有floyd. 考虑floyd的过程: c[i][j]=min(c[i][ ...

  6. 洛谷 P2886 [USACO07NOV]牛继电器Cow Relays

    题面 解题思路 ## floyd+矩阵快速幂,跟GhostCai爷打赌用不用离散化,最后完败..GhostCai真是tql ! 有个巧妙的方法就是将节点重新编号,因为与节点无关. 代码 #includ ...

  7. [LUOGU] P2886 [USACO07NOV]牛继电器Cow Relays

    https://www.luogu.org/problemnew/show/P2886 给定无向连通图,求经过k条边,s到t的最短路 Floyd形式的矩阵乘法,同样满足结合律,所以可以进行快速幂. 离 ...

  8. luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵

    题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...

  9. [USACO07NOV]牛继电器Cow Relays

    题目描述 给出一张无向连通图,求S到E经过k条边的最短路. 输入输出样例 输入样例#1: 2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9 输出样例#1: 10 ...

随机推荐

  1. RandomAccessFile 文件读写中文乱码解决方案!

    RandomAccessFile 读写文件时,不管文件中保存的数据编码格式是什么   使用 RandomAccessFile对象方法的 readLine() 都会将编码格式转换成 ISO-8859-1 ...

  2. Web Service自动化测试知识点导图

  3. Chapter03 第一节 简单变量

    3.1 简单变量 定义一个变量后,系统根据变量类型的不同在内存的不同区域分配一个空间,将值复制到内存中,然后用户通过变量名访问这个空间. 3.1.1 变量名 变量名的命名规则: 只能使用字母.数字.下 ...

  4. Hand on Machine Learning第三章课后作业(2):其余小练习

    -#!/usr/bin/env python -# # # -- coding: utf-8 -- -# # # @Time : 2019.5.22 14:09 -# # # @Author : An ...

  5. 15.永恒之蓝exp----

    永恒之蓝exp 2017年,影响于全世界 SMB ripid7官网获取ms17-010的exp信息 Rapid7: https://www.rapid7.com/db/modules/exploit/ ...

  6. 第三章 四大组件之Activity(一)生命周期

    1.生命周期: onCreate()->onStart()->onResume()->onPause()->onStop()->onDestroy() 2.各种状况下Ac ...

  7. CentOS7 硬盘检测

    一.测试硬盘健康状态 安装相关工具:yum -y install smartmontools SMART是一种磁盘自我分析检测技术,早在90年代末就基本得到了普及每一块硬盘(包括IDE.SCSI),在 ...

  8. uva-796.critical links(连通图的桥)

    本题大意:求出一个无向图的桥的个数并且按照顺序输出所有桥. 本题思路:注意判重就行了,就是一个桥的裸题. 判重思路目前知道的有两种,第一种是哈希判重,第二种和邻接矩阵的优化一样,就是只存图的上半角或者 ...

  9. 面向对象super 练习

    看代码写结果[如果有错误,则标注错误即可,并且假设程序报错可以继续执行] class Foo(object): a1 = 1 def __init__(self,num): self.num = nu ...

  10. Python 入门之 递归

    Python 入门之 递归 1.递归: 递:一直传参 归:返回 (1)不断调用自己本身(无效递归 -- 死递归) def func(): print(1) func() func() (2)有明确的终 ...