问题描述

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

输入格式

* Line 1: Four space-separated integers: N, T, S, and E

* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

输出格式

* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

样例输入

2 6 6 4

11 4 6

4 4 8

8 4 9

6 6 8

2 6 9

3 8 9

样例输出

10

题目大意

给出一张无向连通图,求S到E经过k条边的最短路。

解析

倍增Floyd模版题。利用矩阵快速幂的形式可以在\(log\)的时间内处理经过k条路径的最短路。

虽然一共有1000000个点,但是因为只有100条边,可以直接用100条边的端点建图,离散化编号即可。

代码

#include <iostream>
#include <cstdio>
#define int long long
#define N 1000002
using namespace std;
const int inf=1<<30;
struct Matrix{
int a[500][500];
}S;
int n,m,s,t,i,j,id[N],cnt;
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
Matrix mult(Matrix a,Matrix b)
{
Matrix c;
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++) c.a[i][j]=inf;
}
for(int k=1;k<=cnt;k++){
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++) c.a[i][j]=min(c.a[i][j],a.a[i][k]+b.a[k][j]);
}
}
return c;
}
Matrix poww(Matrix a,int b)
{
b--;
Matrix ans=a,base=a;
while(b){
if(b&1) ans=mult(ans,base);
base=mult(base,base);
b>>=1;
}
return ans;
}
signed main()
{
n=read();m=read();s=read();t=read();
for(i=1;i<=2*m;i++){
for(j=1;j<=2*m;j++) S.a[i][j]=inf;
}
for(i=1;i<=m;i++){
int w=read(),u=read(),v=read();
if(!id[u]) id[u]=++cnt;
if(!id[v]) id[v]=++cnt;
S.a[id[u]][id[v]]=S.a[id[v]][id[u]]=w;
}
Matrix ans=poww(S,n);
cout<<ans.a[id[s]][id[t]]<<endl;
return 0;
}

[洛谷P2886] 牛继电器Cow Relays的更多相关文章

  1. 洛谷 [P2886] 牛继电器Cow Relays

    最短路 + 矩阵快速幂 我们可以改进矩阵快速幂,使得它适合本题 用图的邻接矩阵和快速幂实现 注意 dis[i][i] 不能置为 0 #include <iostream> #include ...

  2. 洛谷P2886牛继电器

    传送门啦 倍增 $ Floyd $ 注意结构体里二维数组不能开到 $ 2000 $ #include <iostream> #include <cstdio> #include ...

  3. P2886 [USACO07NOV]牛继电器Cow Relays

    题目描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race ...

  4. [USACO07NOV]牛继电器Cow Relays (最短路,DP)

    题目链接 Solution 非正解 似乎比较蛇啊,先个一个部分分做法,最短路+\(DP\). 在求最短路的堆或者队列中存储元素 \(dis_{i,j}\) 代表 \(i\) 这个节点,走了 \(j\) ...

  5. 洛谷P2886 [USACO07NOV]牛继电器Cow Relays

    题意很简单,给一张图,把基本的求起点到终点最短路改成求经过k条边的最短路. 求最短路常用的算法是dijkstra,SPFA,还有floyd. 考虑floyd的过程: c[i][j]=min(c[i][ ...

  6. 洛谷 P2886 [USACO07NOV]牛继电器Cow Relays

    题面 解题思路 ## floyd+矩阵快速幂,跟GhostCai爷打赌用不用离散化,最后完败..GhostCai真是tql ! 有个巧妙的方法就是将节点重新编号,因为与节点无关. 代码 #includ ...

  7. [LUOGU] P2886 [USACO07NOV]牛继电器Cow Relays

    https://www.luogu.org/problemnew/show/P2886 给定无向连通图,求经过k条边,s到t的最短路 Floyd形式的矩阵乘法,同样满足结合律,所以可以进行快速幂. 离 ...

  8. luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵

    题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...

  9. [USACO07NOV]牛继电器Cow Relays

    题目描述 给出一张无向连通图,求S到E经过k条边的最短路. 输入输出样例 输入样例#1: 2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9 输出样例#1: 10 ...

随机推荐

  1. Spring框架中的依赖注入

    依赖注入(DI : Dependency Injection)是基于.xml配置文件内节点的书写. 注入类型: 1.设置注入,调用了Bean的setXXX()进行值注入 普通属性(value值表示要显 ...

  2. 测开之路一百四十九:jinja2模板之宏

    jinja2是python的模板引擎, 在写python web使用的过程中,macro可以节省大量的代码 比如上一篇的渲染页面 <!DOCTYPE html><html lang= ...

  3. Apache配置文件介绍

    一.配置文件存放位置 apache配置文件名为httpd.conf 1.yum安装 yum安装后,apache配置文件httpd.conf存放在目录/etc/httpd/conf下 2.源码编译安装 ...

  4. win10 iis部署后 浏览目录报错 500.19

    错误摘要HTTP 错误 500.19 - Internal Server Error无法访问请求的页面,因为该页的相关配置数据无效.详细错误信息模块 IIS Web Core  通知 BeginReq ...

  5. windows 的cmd设置代理的问题

    今天给公司一同事用cmd来安装gulp(npm install -g gulp), 死活安装不上,一直报一大堆的错误:经仔细查阅是代理的问题,故总结如下: 若公司的电脑是通过设置代理来访问外网,则需要 ...

  6. win10安装mysql时报错[MY-012576] [InnoDB] Unable to create temporary file; errno: 2

    报错信息 解决: 在my.ini文件里面的 [mysqld]区段内加入: #自己指定的临时文件目录 tmpdir="临时目录" 添加好后初始化成功 接下来启动mysql服务的时候报 ...

  7. Python模块logging

    基本用法: import logging import sys # 获取logger实例,如果参数为空则返回root logger logger = logging.getLogger("A ...

  8. 由于;引发的Oracle的BadSqlExecption

    一.在使用单引号进行各种转换合并的时候发生的异常: 1:首先单引号的表示符为 ' 在Oracle中如果SQL语句带上了分号是会报错的, 在SQL传入进行执行的时候会报BadSQLExecption,这 ...

  9. 安装libpng库

    一. 安装libpng库前需要先安装zlib库,libpng库依赖zlib库 1.1. zlib库安装 1.1.1. 下载地址:http://www.zlib.net/ 1.1.2. 解压后得到zli ...

  10. 阿里云服务器重启出现An error occurred 如何处理

    最近网站重启阿里云服务后,出现 An error occurred, An error occurred. Sorry, the page you are looking for is current ...