ARC096E Everything on It 容斥原理
题目传送门
https://atcoder.jp/contests/arc096/tasks/arc096_c
题解
考虑容斥,问题转化为求至少有 \(i\) 个数出现不高于 \(1\) 次。
那么我们令这 \(i\) 个数被划分到 \(j\) 个集合中。但是由于限制是不多于一次,意味着可能存在一些数没有出现过。那么,我们计算的时候可以将这种情况看成新增一个数 \(0\),然后将这 \(i+1\) 个数划分到 \(j+1\) 个集合中,与 \(0\) 在同一个集合的表示没有出现过。于是将 \(i\) 个数中的一些数划分到 \(j\) 个集合的方案数为 \(\begin{Bmatrix} i + 1 \\ j + 1 \end{Bmatrix}\)。
然后考虑剩下来的 \(n - i\) 个数可以形成 \(2^{n-i}\) 个集合。我们可以枚举这些集合有没有出现,那么就是 \(2^{2^{n-i}}\)。最后剩下的 \(n-i\) 个数还可以往之前的 \(j\) 个集合里面贴,所以再乘上 \((2^{n-i})^j\)。
于是最后的答案为:
\]
下面是代码,由于乘方都可以被预处理,所以时间复杂度为 \(O(n^2)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 3000 + 7;
int n, P;
int S[N][N], C[N][N];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y, const int &P = ::P) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
inline void ycl() {
S[0][0] = C[0][0] = 1;
for (int i = 1; i <= n + 1; ++i) {
C[i][0] = 1;
for (int j = 1; j <= i; ++j) S[i][j] = (S[i - 1][j - 1] + (ll)S[i - 1][j] * j) % P, C[i][j] = smod(C[i - 1][j - 1] + C[i - 1][j]);
}
}
inline void work() {
ycl();
int ans = 0;
for (int i = 0; i <= n; ++i) {
int cnt = 0, ni22 = fpow(2, fpow(2, n - i, P - 1)), fn1 = fpow(2, n - i), fn = 1;
for (int j = 0; j <= i; ++j) sadd(cnt, (ll)S[i + 1][j + 1] * ni22 % P * fn % P), fn = (ll)fn * fn1 % P;
// dbg("i = %d, ni22 = %d, fn1 = %d, cnt = %d\n", i, ni22, fn1, cnt);
if (i & 1) sadd(ans, P - (ll)cnt * C[n][i] % P);
else sadd(ans, (ll)cnt * C[n][i] % P);
}
printf("%d\n", ans);
}
inline void init() {
read(n), read(P);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
ARC096E Everything on It 容斥原理的更多相关文章
- hdu4059 The Boss on Mars(差分+容斥原理)
题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设 则 为一阶差分. 二阶差分: n阶差分: 且可推出 性质: 1. ...
- hdu2848 Visible Trees (容斥原理)
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
- HDU5838 Mountain(状压DP + 容斥原理)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...
- 【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 561 Solved: 293[Submit][Status ...
- HDU 2204Eddy's爱好(容斥原理)
Eddy's爱好 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- php substr_replace()函数 语法
php substr_replace()函数 语法 作用:替换字符串中某串为另一个字符串大理石平台价格 语法:substr_replace(string,replacement,start,lengt ...
- 关于CSS你应该知道的基础知识 - 样式应用篇
上一篇简单总结了一下选择器,如果一个元素被多个选择器选中,元素的样式就会以级联方式被应用到.要搞清最终那个样式被应用到元素上了,首先要明白引用CSS代码的几种方式. CSS代码引用方式 如何应用CSS ...
- LintCode之左填充
题目描述: 分析:由样例可知,第二个参数表示要返回的字符串的最小长度,所以当给定字符串的长度小于规定字符串最小长度时就在左边填充空格,另外还有一个重载方法leftpad的第三个参数指定左边填充的字符. ...
- Cookie由谁设置、怎么设置、有什么内容?
Cookie是由服务器生成,保存在客户端本地的一个文件,通过response响应头的set-Cookie字段进行设置,下面是一个示例: Cookie包含什么信息? 它可以记录你的用户ID.密码.浏览过 ...
- HDU6599:求本质不同的子串(回文串)长度及数量
目录 hdu6599题意: manacher+后缀自动机+倍增 \(O(nlog(n))\) manacher+后缀数组+二分 \(O(nlog(n))\) 回文树(回文自动机) \(O(n)\) @ ...
- 解决IDEA输入法输入中文候选框不显示问题
本机环境为: 系统: win7 jdk版本:jdk1.8.0_65 idea版本:2017.2.3 解决方法:关掉idea,进入idea的安装目录找到jre64文件夹重命名为j ...
- Ehcache配置项及持久化到硬盘
EhCache 常见的配置项: cache元素的属性 name:缓存名称 maxElementsInMemory:内存中最大缓存对象数 maxElementsOnDisk:硬盘中最大缓存对象数,若是0 ...
- leetcode 215. 数组中的第K个最大元素(python)
在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2输出: 5示 ...
- curl的一些常用命令
在学习nodejs中get到了一项新的技能crul curl 可以给在命令行上面给node服务器发送一些信息,然后得到服务器返回而响应信息,在命令行中打印出来. 下面是我整理的一些常用的命令:
- JSP 定义行列数表单创建表格
1.添加行数 .列数提交表单 <!doctype html> <html> <head> <title>setTable-发送表单</title& ...