模型保存和加载

sklearn模型的保存和加载API

  • from sklearn.externals import joblib

    • 保存:joblib.dump(rf, 'test.pkl')
    • 加载:estimator = joblib.load('test.pkl')

线性回归的模型保存加载案例

def linear3():
"""
岭回归的优化方法对波士顿房价预测
"""
#获取数据
boston=load_boston()
#划分数据集
x_train,x_test,y_train,y_test=train_test_split(boston.data,boston.target,random_state=22)
#标准化
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
#预估器
# estimator=Ridge(alpha=0.0001, max_iter=100000)
# estimator.fit(x_train,y_train) #保存模型
# joblib.dump(estimator,"my_ridge.pkl") #加载模型
estimator=joblib.load("my_ridge.pkl") #得出模型
print("岭回归-权重系数为:\n",estimator.coef_)
print("岭回归-偏置为:\n",estimator.intercept_ ) #模型评估
y_predict = estimator.predict(x_test)
print("预测房价:\n", y_predict)
error = mean_squared_error(y_test, y_predict)
print("岭回归-均方差误差:\n", error)
return None if __name__ == '__main__':
# linear1()
# linear2()
linear3()

保存:保存训练完结束的模型

加载:加载已有的模型,去进行预测结果和之前的模型一样

无监督学习-K-means算法

K-means原理

我们先来看一下一个K-means的聚类效果图

K-means聚类步骤

  • 随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
  • 4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程

我们以一张图来解释效果

K-meansAPI

  • sklearn.cluster.KMeans(n_clusters=8,init=‘k-means++’)

    • k-means聚类
    • n_clusters:开始的聚类中心数量
    • init:初始化方法,默认为'k-means ++’
    • labels_:默认标记的类型,可以和真实值比较(不是值比较)

案例:k-means对Instacart Market用户聚类

如何评估聚类的效果?

Kmeans性能评估指标

轮廓系数

轮廓系数值分析

分析过程(我们以一个蓝1点为例)

  • 1、计算出蓝1离本身族群所有点的距离的平均值a_i

  • 2、蓝1到其它两个族群的距离计算出平均值红平均,绿平均,取最小的那个距离作为b_i

  • 根据公式:极端值考虑:如果b_i >>a_i: 那么公式结果趋近于1;如果a_i>>>b_i: 那么公式结果趋近于-1

结论

如果b_i>>a_i:趋近于1效果越好, b_i<<a_i:趋近于-1,效果不好。轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

轮廓系数API

  • sklearn.metrics.silhouette_score(X, labels)

    • 计算所有样本的平均轮廓系数
    • X:特征值
    • labels:被聚类标记的目标值

案例-聚类评估

K-means总结

  • 特点分析:采用迭代式算法,直观易懂并且非常实用
  • 缺点:容易收敛到局部最优解(多次聚类)

回归与聚类整体算法总结

机器学习7-模型保存&无监督学习的更多相关文章

  1. 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction

    监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...

  2. 深度|OpenAI 首批研究成果聚焦无监督学习,生成模型如何高效的理解世界(附论文)

    本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载,原文. 选自 Open AI 作者:ANDREJ KARPATHY, PIETER ABBEEL, GREG BRO ...

  3. Python 机器学习实战 —— 无监督学习(上)

    前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...

  4. Python 机器学习实战 —— 无监督学习(下)

    前言 在上篇< Python 机器学习实战 -- 无监督学习(上)>介绍了数据集变换中最常见的 PCA 主成分分析.NMF 非负矩阵分解等无监督模型,举例说明使用使用非监督模型对多维度特征 ...

  5. 【机器学习基础】无监督学习(1)——PCA

    前面对半监督学习部分作了简单的介绍,这里开始了解有关无监督学习的部分,无监督学习内容稍微较多,本节主要介绍无监督学习中的PCA降维的基本原理和实现. PCA 0.无监督学习简介 相较于有监督学习和半监 ...

  6. 【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC

    如果要对硬币进行分类,我们对硬币根据不同的尺寸重量来告诉机器它是多少面值的硬币 这种对应的机器学习即使监督学习,那么如果我们不告诉机器这是多少面额的硬币,只有尺寸和重量,这时候让机器进行分类,希望机器 ...

  7. Python机器学习入门(1)之导学+无监督学习

    Python Scikit-learn *一组简单有效的工具集 *依赖Python的NumPy,SciPy和matplotlib库 *开源 可复用 sklearn库的安装 DOS窗口中输入 pip i ...

  8. <机器学习>无监督学习算法总结

    本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...

  9. Coursera机器学习笔记(一) - 监督学习vs无监督学习

    转载 http://daniellaah.github.io/2016/Machine-Learning-Andrew-Ng-My-Notes-Week-1-Introduction.html 一. ...

随机推荐

  1. 仵航说 SpringBoot项目配置Log日志服务-仵老大

    今天领导让我配置一个log日志服务,我哪里见过哟,然后就去百度了,结果挨个试下去,找到了一个能用的,分享给大家 大致四个地方 分别是 1.pom文件需要引入依赖 2.创建一个TestLog类 3.在y ...

  2. Spring MVC整合 freemarker

    1.什么是Spring MVC? Spring MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将Web层进行职责解耦,基于请求驱 ...

  3. XML外部实体注入

    文章参考链接: 参考视频: https://www.bilibili.com/video/BV1tW411o7Fd?from=search&seid=13868972487110648015 ...

  4. IT职业:2021年掌握的10项关键技能

    原文:https://enterprisersproject.com/article/2020/12/it-careers-10-critical-skills-master-2021 科技行业似乎在 ...

  5. U8CO使用C#版(一)

    1.懒加载: object obj = null; System.Type oType = System.Type.GetTypeFromProgID("U8Login.clsLogin&q ...

  6. element-ui 表单 v-if 不能验证问题

    element-ui 表单v-if 很多人会遇到无法验证的问题,网上很多是在el-form-item标签前加一个div然后把v-if拿到div上去像这样 <div v-if="addc ...

  7. 动态SQL基本语句用法

    1.if语句 如果empno不为空,则在WHERE参数后加上AND empno = #{empno},这里有1=1所以即使empno为null,WHERE后面也不会报错. 映射文件 <selec ...

  8. Android驱动学习-app调用内核驱动过程(驱动框架回顾)

    考研已经过去了,android驱动的学习也断了半年多了,现在重新捡起来学习,回顾一下Android驱动的大体框架. Android系统的核心是java,其有一个David虚拟机.Android-app ...

  9. 图解 Java 数据结构

    图解Java数据结构: 一.链表       Java ListNode     https://www.cnblogs.com/easyidea/p/13371863.html 二.栈       ...

  10. SQL语句实现增删改查

    查询语句SELECT *FROM mydriect WHERE id=1; 删除语句DELETE FROM mydriect WHERE id=1; 修改语句UPDATE mydriect SET 自 ...