LINK:P6570 [NOI Online #3 提高组]优秀子序列

Online 2的T3 容易很多 不过出于某种原因(时间不太够 浪了

导致我连暴力的正解都没写.

容易想到 f[i][j]表示前i个数 当前或为j的方案数.

转移很简单 不过复杂度最坏是n*值域的.

只有20 可以把状态降维 可以枚举子集来剪枝 这样就可以卡过40分了.

容易发现当前为0的时候 整体状态要乘2这个可以打一个标记。

这样在开o2的情况下就可以获得70分的好成绩了。

const int MAXN=200010<<1,maxn=1000010;
int n,maxx,m,top;
int a[maxn],phi[MAXN];
int p[MAXN],v[MAXN],mi[maxn];
int f[MAXN];
inline void prepare()
{
m=1;while(m<=maxx)m=m<<1;
phi[1]=1;
rep(2,m,i)
{
if(!v[i])
{
p[++top]=i;
v[i]=i;
phi[i]=i-1;
}
rep(1,top,j)
{
if(m/p[j]<i)break;
v[i*p[j]]=p[j];
if(v[i]==p[j])
{
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
int main()
{
//freopen("sequence.in","r",stdin);
//freopen("sequence.out","w",stdout);
get(n);mi[0]=1;
rep(1,n,i)get(a[i]),maxx=max(maxx,a[i]),mi[i]=(ll)mi[i-1]*2%mod;
f[0]=1;prepare();--m;int flag=0;
rep(1,n,i)
{
if(!a[i]){++flag;continue;}
if(a[i])if(flag){rep(0,m,j)f[j]=(ll)f[j]*mi[flag]%mod;flag=0;}
int ww=a[i]^m;
for(int j=ww;j;j=ww&(j-1))f[j|a[i]]=add(f[j|a[i]],f[j]);
f[a[i]]=add(f[a[i]],f[0]);
}
int ans=0;
rep(0,m,j)ans=(ans+(ll)f[j]*mi[flag]%mod*phi[j+1])%mod;
put(ans);return 0;
}

考虑优化 这个状态转移显然是不可能再优化了。

容易发现 j这个状态 和序列的顺序是无关的。

换句话说 无论序列长什么样子 只要和原来的数集以及出现的次数对上方案数固定。

这样可以直接利用值域来进行dp 脱离n的大小限制.

容易想到 设f[i]表示状态i的方案数。

这里可以刷表可以填表 不过填表比较清晰.

想到枚举一个数字 j 然后 累加上 sum[j]*f[i^j] sum[j]表示j出现的次数.

容易发现这样会计算重复 枚举j/i^j 刚好会重复 实际上 只需要枚举一半即可。

关于证明也很好想 两边方案数对等 所以枚举一边即可。

这样复杂度为3^18/2。

不开o2就能过 令我难过的是 多写了一个mul函数和add函数就会直接T掉。

所以函数的调用也浪费很多时间 这点值得注意 要减小自己的常数.

const int MAXN=200010<<1,maxn=1000010;
int n,maxx,m,top;
int a[MAXN],phi[MAXN];
int p[MAXN],v[MAXN],f[MAXN];
inline int mul(int a,int b){return (ll)a*b%mod;}
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline int mux(int a,int b){return a-b<0?a-b+mod:a-b;}
inline void prepare()
{
m=1;while(m<=maxx)m=m<<1;
phi[1]=1;
rep(2,m,i)
{
if(!v[i])
{
p[++top]=i;
v[i]=i;
phi[i]=i-1;
}
rep(1,top,j)
{
if(m/p[j]<i)break;
v[i*p[j]]=p[j];
if(v[i]==p[j])
{
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=mul(cnt,b);
b=mul(b,b);p=p>>1;
}
return cnt;
}
int main()
{
//freopen("1.in","r",stdin);
//freopen("sequence.out","w",stdout);
get(n);
rep(1,n,i){int get(x);++a[x],maxx=max(maxx,x);}
prepare();--m;f[0]=ksm(2,a[0]);
rep(1,m,i)
{
for(int j=i;j>(i^j);j=i&(j-1))
f[i]=(f[i]+(ll)f[i^j]*a[j])%mod;
}
int ans=0;
rep(0,m,j)ans=add(ans,mul(f[j],phi[j+1]));
put(ans);return 0;
}

luogu P6570 [NOI Online #3 提高组]优秀子序列 二进制 dp的更多相关文章

  1. 洛谷 P6570 - [NOI Online #3 提高组] 优秀子序列(集合幂级数+多项式)

    洛谷题面传送门 首先 \(3^n\) 的做法就不多说了,相信对于会状压 dp+会枚举子集的同学来说不算困难(暴论),因此这篇博客将着重讲解 \(2^nn^2\) 的做法. 首先如果我们把每个 \(a_ ...

  2. [NOI Online 2021 提高组] 积木小赛

    思路不说了. 想起来自己打比赛的时候,没睡好.随便写了个\(HASH\),模数开小一半分都没有. 然后学了\(SAM\),发现这个判重不就是个水题. \(SAM\)是字串tire的集合体. 随便\(d ...

  3. [NOI Online #2 提高组]涂色游戏 题解

    题目描述 你有 1020 个格子,它们从 0 开始编号,初始时所有格子都还未染色,现在你按如下规则对它们染色: 编号是 p1 倍数的格子(包括 0号格子,下同)染成红色. 编号是 p2 倍数的格子染成 ...

  4. NOI Online #2 提高组 游戏

    没用二项式反演的菜比. 题目链接 Solution 非平局代表的树上祖先关系是比较好统计,(可以在处理一个点时,考虑用他去匹配他的子树中的东西)而平局的关系比较难统计.我们不妨求出至少 \(k\) 个 ...

  5. NOI Online #2 提高组 游记

    没 NOI Online 1 挂的惨就来写游记吧,不知道为啥 NOI Online 1 民间数据测得 60 分的 T1 最后爆零了... 昏昏沉沉的醒来,吃了早饭,等到 \(8:30\) 进入比赛网页 ...

  6. NOI Online #3 提高组 T1水壶 题解

    题目描述 有 n 个容量无穷大的水壶,它们从 1∼n 编号,初始时 i 号水壶中装有 Ai 单位的水. 你可以进行不超过 k 次操作,每次操作需要选择一个满足 1≤x≤n−1 的编号 x,然后把 x ...

  7. NOI On Line 提高组题解

    (话说其实我想填的是去年CSP的坑...但是貌似有一道题我还不会写咕咕咕... 先写一下这一次的题解吧. T1:序列.题意省略. 两种操作.这种题要先分析部分分 给出了全部都是2操作的子任务. 发现A ...

  8. NOI Online #3 提高组 游记

    考的好就来写游记吧 2020.5.24 星期日 上一天晚上为了班里事物做 PPT 肝到 11:30,这比赛就打打玩玩.第二天醒来有点昏昏沉沉的感觉. 打开题面,一看 T1,好像是个性质极其简单的前缀和 ...

  9. Luogu P1850 [NOIp2016提高组]换教室 | 期望dp

    题目链接 思路: <1>概率与期望期望=情况①的值*情况①的概率+情况②的值*情况②的概率+--+情况n的值*情况n的概率举个例子,抛一个骰子,每一面朝上的概率都是1/6,则这一个骰子落地 ...

随机推荐

  1. 51Nod 1683 最短路

    题意 给定一个未知的\(0/1\)矩阵,对每个\(i\)求\((1,1)\sim(n,m)\)最短路为\(i\)的概率,在矩阵中不能向左走,路径长度为路径上权值为\(1\)的格子个数. \(n\leq ...

  2. CF1215D Ticket Game(思维,博弈)

    题目 传送门:https://www.luogu.com.cn/problem/CF1215D Idea 一列数,保证能分成左右两部分,其中有若干个数字被抹掉,两个人轮流填数,如果在把这些空缺的数字填 ...

  3. C++敲代码前的准备工作

    #pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,Ofast,inline ...

  4. 浅谈.Net Core DependencyInjection源码探究

    前言     相信使用过Asp.Net Core开发框架的人对自带的DI框架已经相当熟悉了,很多刚开始接触.Net Core的时候觉得不适应,主要就是因为Core默认集成它的原因.它是Asp.Net ...

  5. python爬虫中对含中文的url处理以 及 Python3—UnicodeEncodeError 'ascii' codec can't encode characters in position

    在练习urllib操作中,遇到了url中含有中文字符的问题.比如http://dotamax.com/,看下源码的话,上方的搜索框的name=p,输入内容点击搜索以后,通过GET方法进行传递,比如我们 ...

  6. JavaScript之setinterval的具体使用

    关于setInterval在api文档中也有很详细的解释,比如下面那两个: setInterval() 方法可按照指定的周期(以毫秒计)来调用函数或计算表达式. setInterval() 方法会不停 ...

  7. 03-Python控制语句

    一.简介 通过一些语句来改变程序的执行顺序,这些语句被叫做控制语句,在python主要有if.for.while三种控制流语句. 二.if语句 用来检测一个条件是否成立,如果为真,则执行该语句(一般为 ...

  8. Unity3D+Post Processing Stack V2自定义后处理效果研究

    背景 众所周知,Unity3D支持自定义后处理效果,实现过程有三步: 添加着色器,在着色器里书写后处理代码: 添加材质,把材质和着色器绑定: 给相机添加脚本,重写其OnRenderImage方法,将材 ...

  9. IE9+的树状下拉菜单,支持多选

    //JS核心代码function treeBox(Config){var el=eval(Config.el);var w=Config.width;var h=Config.height;var d ...

  10. 上亿数据怎么玩深度分页?兼容MySQL + ES + MongoDB

    面试题 & 真实经历 面试题:在数据量很大的情况下,怎么实现深度分页? 大家在面试时,或者准备面试中可能会遇到上述的问题,大多的回答基本上是分库分表建索引,这是一种很标准的正确回答,但现实总是 ...