比赛链接:https://codeforces.com/contest/1408

A. Circle Coloring

题意

给出三个长为 $n$ 的序列 $a,b,c$,对于每个 $i$,$a_i \ne b_i,\ a_i \ne c_i,\ b_i \ne c_i$ 。

构造序列 $p$,使得:

  • $p_i \in \{a_i, b_i, c_i\}$
  • $p_i \neq p_{(i + 1 \mod n)}$

题解

即每个数不与前后两个数相同,因为三个序列同一位置两两不同,所以对于每个位置一定都有满足条件的数,枚举即可。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<vector<int>> vec(3, vector<int> (n));
for (auto &v : vec) {
for (auto &x : v) {
cin >> x;
}
}
vector<int> p(n);
for (int i = 0; i < n; i++) {
for (auto &v : vec) {
if (v[i] != p[(i - 1 + n) % n] and v[i] != p[(i + 1) % n]) {
p[i] = v[i];
break;
}
}
}
for (int i = 0; i < n; i++) {
cout << p[i] << " \n"[i == n - 1];
}
}
return 0;
}

B. Arrays Sum

题意

给出一个大小为 $n$ 的非递减序数组 $a$ 和一个正整数 $k$ 。

构造 $m$ 个非递减序数组 $b_1, b_2, \ldots, b_m$,要求:

  • 每个 $b_i$ 大小为 $n$
  • $a_i = b_{1, i} + b_{2, i} + \ldots + b_{m, i}$
  • 每个 $b_i$ 中最多有 $k$ 个不同的数

找出 $m$ 的最小值。

题解

设 $a$ 中有 $x$ 个不同的数,答案即 $1 + \lceil \frac{x - k}{k - 1} \rceil$ 。

因为 $b_1$ 可以包含 $a$ 中前 $k$ 个不同的数,之后的 $b_i$ 因为要用 $0$ 维护前面已有的和,每次只能新加 $a$ 中 $k-1$ 个不同的数。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while (t--) {
int n, k;
cin >> n >> k;
set<int> st;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
st.insert(x);
}
if (k == 1) {
cout << (st.size() == 1 ? 1 : -1) << "\n";
continue;
}
cout << 1 + max(0, (int(st.size()) - 2)) / (k - 1) << "\n";
}
return 0;
}

C. Discrete Acceleration

题意

有一条公路从坐标 $0$ 到坐标 $l$ 长为 $l$ 米,初始时甲车在坐标 $0$ 处,乙车在坐标 $l$ 处。

公路上有 $n$ 个加速点,两车初速度均为 $1m/s$,经过一个加速点增加 $1m/s$,计算两车多久相遇。

题解

计算两车到每个加速点的时间,两车会在甲更快到的加速点和乙更快到的加速点之间相遇。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int t;
cin >> t;
while (t--) {
int n, l;
cin >> n >> l;
vector<double> a(n + 2);
a[0] = 0;
a[n + 1] = l;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
vector<double> t1(n + 2), t2(n + 2);
t1[0] = 0;
t2[n + 1] = 0;
for (int i = 1; i < n + 2; i++) {
t1[i] = t1[i - 1] + (a[i] - a[i - 1]) / i;
}
for (int i = n; i >= 0; i--) {
t2[i] = t2[i + 1] + (a[i + 1] - a[i]) / (n + 1 - i);
}
double ans = 0.0;
for (int i = 1; i < n + 2; i++) {
if (t1[i - 1] <= t2[i - 1] and t1[i] >= t2[i]) {
ans = max(t1[i - 1], t2[i]) + (a[i] - a[i - 1] - abs(t1[i - 1] - t2[i]) * (t1[i - 1] < t2[i] ? i : n + 2 - i)) / (n + 2);
break;
}
}
cout << ans << "\n";
}
return 0;
}

D. Searchlights

题意

在二维平面上给出 $n$ 个人和 $m$ 个探照灯的坐标 $(a,b)$ 和 $(c,d)$,每次操作可以选择:

  • 将所有人横坐标加一
  • 将所有人纵坐标加一

问使得任一人都不在任一探照灯左下方的最少操作次数。

题解

对于第 $i$ 个人和第 $j$ 个探照灯 ,如果 $dx + a_i \ge c_j + 1$,那么他一定可以移出探照灯的范围,否则,对于所有小于 $dx = c_j - a_i + 1$ 的移动次数,它们对应的纵坐标移动次数至少要为 $d_j - b_i + 1$ 次才能移出该探照灯的范围。

对于每个人枚举 $m$ 个探照灯,记录并更新每个横坐标移动次数对应的纵坐标移动次数的最大值,最后从后向前遍历并更新纵坐标的最大移动次数,因为如果之前移动了更多的横坐标仍需将纵坐标移动这么多次,那么对于现在移动了更少的横坐标也是必须的。

$dp_i$ 的含义为横坐标移动次数为 $i$ 时,纵坐标的移动次数至少要为 $dp_i$ 才能保证所有人都移出探照灯的范围。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++) {
cin >> a[i] >> b[i];
}
vector<int> c(m), d(m);
for (int i = 0; i < m; i++) {
cin >> c[i] >> d[i];
}
constexpr int N = 1e6 + 10;
vector<int> dp(N);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (a[i] <= c[j]) {
dp[c[j] - a[i]] = max(dp[c[j] - a[i]], d[j] + 1 - b[i]);
}
}
}
for (int i = N - 2; i >= 0; i--) {
dp[i] = max(dp[i], dp[i + 1]);
}
int ans = INT_MAX;
for (int i = 0; i < N; i++) {
ans = min(ans, i + dp[i]);
}
cout << ans << "\n";
return 0;
}

E. Avoid Rainbow Cycles

题意

给出 $m$ 个集合 $A$,所有元素大小在 $[1,n]$ 之间。

每个集合中的元素两两成边,颜色与集合相同,不同集合颜色不同。

给出大小为 $m,n$ 的两个数组 $a,b$,从 $A_i$ 中移除值为 $j$ 的元素花费为 $a_i + b_j$ 。

彩虹环指边颜色不重复的环,问使得图中无彩虹环的最少花费。

题解

构造集合和数值的二分图,$A_i$ 与值为 $j$ 的元素间边权为 $a_i + b_j$,最少花费即为总边权和减去二分图的最大生成树。

代码

#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2e5 + 10; int fa[N]; int Find(int x) {
return fa[x] == x ? x : fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x);
y = Find(y);
if (x != y) {
if (x < y) fa[y] = x;
else fa[x] = y;
}
} void Init() {
for (int i = 0; i < N; i++) {
fa[i] = i;
}
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
Init();
int m, n;
cin >> m >> n;
vector<int> a(m);
for (auto &x : a) cin >> x;
vector<int> b(n);
for (auto &x : b) cin >> x;
long long sum = 0;
vector<tuple<int, int, int>> edges;
for (int i = 0; i < m; i++) {
int s;
cin >> s;
for (int j = 0; j < s; j++) {
int x;
cin >> x;
--x;
sum += a[i] + b[x];
edges.emplace_back(a[i] + b[x], i + n, x);
}
}
sort(edges.begin(), edges.end(), greater<>());
for (auto [w, u, v] : edges) {
if (Find(u) != Find(v)) {
Union(u, v);
sum -= w;
}
}
cout << sum << "\n";
return 0;
}

F. Two Different

题意

给出一个大小为 $n$ 的数组 $a$,其中 $a_i = i$ 。

每次操作可以选取两个元素并用二元映射函数 $f$ 赋值:$a_i = a_j = f(a_i,a_j)$ 。

试给出一种操作方式,使得无论映射函数如何,最终 $a$ 中最多只有两个不同的数。

题解

如果数组大小为 $2^p$,那么最终可以都变为一个数。

如:

  1. 1 2 3 4
  2. 5 5 6 6
  3. 7 7 7 7

如果数组大小不为 $2^p$,对两个端点所在的 $2^p$ 长区间各操作一次即可。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<pair<int, int>> ans;
function<void(int, int)> dfs = [&](int l, int r) {
if (l == r) return;
int mid = (l + r) / 2;
dfs(l, mid);
dfs(mid + 1, r);
for (int i = l, j = mid + 1; i <= mid; i++, j++) {
ans.emplace_back(i, j);
}
};
int p = 1 << __lg(n);
dfs(1, p);
if (p != n) {
dfs(n - p + 1, n);
}
cout << ans.size() << "\n";
for (auto [x, y] : ans) {
cout << x << ' ' << y << "\n";
}
return 0;
}

参考博客

https://blog.csdn.net/qq_45458915/article/details/108912813

Grakn Forces 2020的更多相关文章

  1. CF Grakn Forces 2020 1408E Avoid Rainbow Cycles(最小生成树)

    1408E Avoid Rainbow Cycles 概述 非常有趣的题目(指解法,不难,但很难想) 非常崇拜300iq,今天想做一套div1时看见了他出的这套题Grakn Forces 2020,就 ...

  2. Grakn Forces 2020 ABCDE题解

    看到老外评论区中说,这场的难度估计是\(div.1\)和\(div.1.5\)的合并 A. Circle Coloring #构造 题目链接 题意 给定三个长度为\(n\)数组\(a,b,c\),要你 ...

  3. hdu 2020

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2020 思路:优先队列水过priority_queue #include <cstdio> ...

  4. Problem 2020 组合(FOJ)

    Problem 2020 组合 Accept: 714    Submit: 1724Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem ...

  5. Codeforces Round #334 (Div. 2) A. Uncowed Forces 水题

    A. Uncowed Forces Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/604/pro ...

  6. Hackerrank 2020 February 2014 解题报告

    Hackerrank 2020 February 2014 解题报告 比赛链接 Sherlock and Watson (20分) 题意:给定一个数组,向右平移K次,然后有Q个询问,问第x位置上是几 ...

  7. 2020: [Usaco2010 Jan]Buying Feed, II

    2020: [Usaco2010 Jan]Buying Feed, II Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 220  Solved: 162[ ...

  8. 2019年IntelliJ IDEA 最新注册码,亲测可用(截止到2020年3月11日)

    2019年IntelliJ IDEA 最新注册码(截止到2020年3月11日) 操作步骤: 第一步:  修改 hosts 文件 ~~~ 在hosts文件中,添加以下映射关系: 0.0.0.0 acco ...

  9. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

随机推荐

  1. ContactCollections Design Report

    通讯录的设计采用了分层+接口+面向对象+文件操作+方法实现 分三层实现,共使用了四个包,实现业务数据访问和界面的分离     contactaccess包实现对文件的访问         包括数据访问 ...

  2. Spring Boot GraphQL 实战 03_分页、全局异常处理和异步加载

    hello,大家好,我是小黑,又和大家见面啦~ 今天我们来继续学习 Spring Boot GraphQL 实战,我们使用的框架是 https://github.com/graphql-java-ki ...

  3. VRay for SketchUp渲染图黑原因及解决方案

    很多人都遇到用Vray for SketchUp云渲染的时候,渲染出来的图片是全黑或者是局部是黑色, 这是什么原因呢? 1.有一种情况是,SketchUp的文件储存机制和其他的软件有些不同,它是把模型 ...

  4. Java内存模型与线程(一)

    Java内存模型与线程 TPS:衡量一个服务性能的标准,每秒事务处理的总数,表示一秒内服务端平均能够响应的总数,TPS又和并发能力密切相关. 在聊JMM(Java内存模型)之前,先说一下Java为什么 ...

  5. Openstack Ocata 公共服务端(三)

    Openstack Ocata 公共服务端 mysql 安装: yum install mariadb mariadb-server mysql 安装过程省略 rabbit-server 安装包: # ...

  6. 树莓派3B装ubuntu server后开启wifi

    树莓派官网选择ubuntu server下载映像 step 1: 使用SDFormatter格式化SD卡: step2: 使用win32diskimager工具将映像写入准备好的SD卡: step3: ...

  7. 获取Java线程转储的常用方法

    1. 线程转储简介 线程转储(Thread Dump)就是JVM中所有线程状态信息的一次快照. 线程转储一般使用文本格式, 可以将其保存到文本文件中, 然后人工查看和分析, 或者使用工具/API自动分 ...

  8. 前端面试准备笔记之JavaScript(04)

    01. DOM的本质 xml是一种可扩展的标记性语言,可扩展就是可以描述任何结构的数据,他是一棵树,可以自定义标签,可以自己扩展. html也是一种特定的xml,他规定了一些标签的名称,结构与xml是 ...

  9. hive搜索报错

    在自己搭建的集群上执行hive搜索语句 select count(*) from ods_event_log where dt='2019-12-14' group by dt; 报错如下: Stat ...

  10. https://www.exploit-db.com/docs/english/45906-cors-attacks.pdf

    https://www.exploit-db.com/docs/english/45906-cors-attacks.pdf What is CORS (cross-origin resource s ...