比赛链接:https://codeforces.com/contest/1408

A. Circle Coloring

题意

给出三个长为 $n$ 的序列 $a,b,c$,对于每个 $i$,$a_i \ne b_i,\ a_i \ne c_i,\ b_i \ne c_i$ 。

构造序列 $p$,使得:

  • $p_i \in \{a_i, b_i, c_i\}$
  • $p_i \neq p_{(i + 1 \mod n)}$

题解

即每个数不与前后两个数相同,因为三个序列同一位置两两不同,所以对于每个位置一定都有满足条件的数,枚举即可。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<vector<int>> vec(3, vector<int> (n));
for (auto &v : vec) {
for (auto &x : v) {
cin >> x;
}
}
vector<int> p(n);
for (int i = 0; i < n; i++) {
for (auto &v : vec) {
if (v[i] != p[(i - 1 + n) % n] and v[i] != p[(i + 1) % n]) {
p[i] = v[i];
break;
}
}
}
for (int i = 0; i < n; i++) {
cout << p[i] << " \n"[i == n - 1];
}
}
return 0;
}

B. Arrays Sum

题意

给出一个大小为 $n$ 的非递减序数组 $a$ 和一个正整数 $k$ 。

构造 $m$ 个非递减序数组 $b_1, b_2, \ldots, b_m$,要求:

  • 每个 $b_i$ 大小为 $n$
  • $a_i = b_{1, i} + b_{2, i} + \ldots + b_{m, i}$
  • 每个 $b_i$ 中最多有 $k$ 个不同的数

找出 $m$ 的最小值。

题解

设 $a$ 中有 $x$ 个不同的数,答案即 $1 + \lceil \frac{x - k}{k - 1} \rceil$ 。

因为 $b_1$ 可以包含 $a$ 中前 $k$ 个不同的数,之后的 $b_i$ 因为要用 $0$ 维护前面已有的和,每次只能新加 $a$ 中 $k-1$ 个不同的数。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t;
cin >> t;
while (t--) {
int n, k;
cin >> n >> k;
set<int> st;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
st.insert(x);
}
if (k == 1) {
cout << (st.size() == 1 ? 1 : -1) << "\n";
continue;
}
cout << 1 + max(0, (int(st.size()) - 2)) / (k - 1) << "\n";
}
return 0;
}

C. Discrete Acceleration

题意

有一条公路从坐标 $0$ 到坐标 $l$ 长为 $l$ 米,初始时甲车在坐标 $0$ 处,乙车在坐标 $l$ 处。

公路上有 $n$ 个加速点,两车初速度均为 $1m/s$,经过一个加速点增加 $1m/s$,计算两车多久相遇。

题解

计算两车到每个加速点的时间,两车会在甲更快到的加速点和乙更快到的加速点之间相遇。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int t;
cin >> t;
while (t--) {
int n, l;
cin >> n >> l;
vector<double> a(n + 2);
a[0] = 0;
a[n + 1] = l;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
vector<double> t1(n + 2), t2(n + 2);
t1[0] = 0;
t2[n + 1] = 0;
for (int i = 1; i < n + 2; i++) {
t1[i] = t1[i - 1] + (a[i] - a[i - 1]) / i;
}
for (int i = n; i >= 0; i--) {
t2[i] = t2[i + 1] + (a[i + 1] - a[i]) / (n + 1 - i);
}
double ans = 0.0;
for (int i = 1; i < n + 2; i++) {
if (t1[i - 1] <= t2[i - 1] and t1[i] >= t2[i]) {
ans = max(t1[i - 1], t2[i]) + (a[i] - a[i - 1] - abs(t1[i - 1] - t2[i]) * (t1[i - 1] < t2[i] ? i : n + 2 - i)) / (n + 2);
break;
}
}
cout << ans << "\n";
}
return 0;
}

D. Searchlights

题意

在二维平面上给出 $n$ 个人和 $m$ 个探照灯的坐标 $(a,b)$ 和 $(c,d)$,每次操作可以选择:

  • 将所有人横坐标加一
  • 将所有人纵坐标加一

问使得任一人都不在任一探照灯左下方的最少操作次数。

题解

对于第 $i$ 个人和第 $j$ 个探照灯 ,如果 $dx + a_i \ge c_j + 1$,那么他一定可以移出探照灯的范围,否则,对于所有小于 $dx = c_j - a_i + 1$ 的移动次数,它们对应的纵坐标移动次数至少要为 $d_j - b_i + 1$ 次才能移出该探照灯的范围。

对于每个人枚举 $m$ 个探照灯,记录并更新每个横坐标移动次数对应的纵坐标移动次数的最大值,最后从后向前遍历并更新纵坐标的最大移动次数,因为如果之前移动了更多的横坐标仍需将纵坐标移动这么多次,那么对于现在移动了更少的横坐标也是必须的。

$dp_i$ 的含义为横坐标移动次数为 $i$ 时,纵坐标的移动次数至少要为 $dp_i$ 才能保证所有人都移出探照灯的范围。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m;
cin >> n >> m;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++) {
cin >> a[i] >> b[i];
}
vector<int> c(m), d(m);
for (int i = 0; i < m; i++) {
cin >> c[i] >> d[i];
}
constexpr int N = 1e6 + 10;
vector<int> dp(N);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (a[i] <= c[j]) {
dp[c[j] - a[i]] = max(dp[c[j] - a[i]], d[j] + 1 - b[i]);
}
}
}
for (int i = N - 2; i >= 0; i--) {
dp[i] = max(dp[i], dp[i + 1]);
}
int ans = INT_MAX;
for (int i = 0; i < N; i++) {
ans = min(ans, i + dp[i]);
}
cout << ans << "\n";
return 0;
}

E. Avoid Rainbow Cycles

题意

给出 $m$ 个集合 $A$,所有元素大小在 $[1,n]$ 之间。

每个集合中的元素两两成边,颜色与集合相同,不同集合颜色不同。

给出大小为 $m,n$ 的两个数组 $a,b$,从 $A_i$ 中移除值为 $j$ 的元素花费为 $a_i + b_j$ 。

彩虹环指边颜色不重复的环,问使得图中无彩虹环的最少花费。

题解

构造集合和数值的二分图,$A_i$ 与值为 $j$ 的元素间边权为 $a_i + b_j$,最少花费即为总边权和减去二分图的最大生成树。

代码

#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2e5 + 10; int fa[N]; int Find(int x) {
return fa[x] == x ? x : fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x);
y = Find(y);
if (x != y) {
if (x < y) fa[y] = x;
else fa[x] = y;
}
} void Init() {
for (int i = 0; i < N; i++) {
fa[i] = i;
}
} int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
Init();
int m, n;
cin >> m >> n;
vector<int> a(m);
for (auto &x : a) cin >> x;
vector<int> b(n);
for (auto &x : b) cin >> x;
long long sum = 0;
vector<tuple<int, int, int>> edges;
for (int i = 0; i < m; i++) {
int s;
cin >> s;
for (int j = 0; j < s; j++) {
int x;
cin >> x;
--x;
sum += a[i] + b[x];
edges.emplace_back(a[i] + b[x], i + n, x);
}
}
sort(edges.begin(), edges.end(), greater<>());
for (auto [w, u, v] : edges) {
if (Find(u) != Find(v)) {
Union(u, v);
sum -= w;
}
}
cout << sum << "\n";
return 0;
}

F. Two Different

题意

给出一个大小为 $n$ 的数组 $a$,其中 $a_i = i$ 。

每次操作可以选取两个元素并用二元映射函数 $f$ 赋值:$a_i = a_j = f(a_i,a_j)$ 。

试给出一种操作方式,使得无论映射函数如何,最终 $a$ 中最多只有两个不同的数。

题解

如果数组大小为 $2^p$,那么最终可以都变为一个数。

如:

  1. 1 2 3 4
  2. 5 5 6 6
  3. 7 7 7 7

如果数组大小不为 $2^p$,对两个端点所在的 $2^p$ 长区间各操作一次即可。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<pair<int, int>> ans;
function<void(int, int)> dfs = [&](int l, int r) {
if (l == r) return;
int mid = (l + r) / 2;
dfs(l, mid);
dfs(mid + 1, r);
for (int i = l, j = mid + 1; i <= mid; i++, j++) {
ans.emplace_back(i, j);
}
};
int p = 1 << __lg(n);
dfs(1, p);
if (p != n) {
dfs(n - p + 1, n);
}
cout << ans.size() << "\n";
for (auto [x, y] : ans) {
cout << x << ' ' << y << "\n";
}
return 0;
}

参考博客

https://blog.csdn.net/qq_45458915/article/details/108912813

Grakn Forces 2020的更多相关文章

  1. CF Grakn Forces 2020 1408E Avoid Rainbow Cycles(最小生成树)

    1408E Avoid Rainbow Cycles 概述 非常有趣的题目(指解法,不难,但很难想) 非常崇拜300iq,今天想做一套div1时看见了他出的这套题Grakn Forces 2020,就 ...

  2. Grakn Forces 2020 ABCDE题解

    看到老外评论区中说,这场的难度估计是\(div.1\)和\(div.1.5\)的合并 A. Circle Coloring #构造 题目链接 题意 给定三个长度为\(n\)数组\(a,b,c\),要你 ...

  3. hdu 2020

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2020 思路:优先队列水过priority_queue #include <cstdio> ...

  4. Problem 2020 组合(FOJ)

    Problem 2020 组合 Accept: 714    Submit: 1724Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem ...

  5. Codeforces Round #334 (Div. 2) A. Uncowed Forces 水题

    A. Uncowed Forces Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/604/pro ...

  6. Hackerrank 2020 February 2014 解题报告

    Hackerrank 2020 February 2014 解题报告 比赛链接 Sherlock and Watson (20分) 题意:给定一个数组,向右平移K次,然后有Q个询问,问第x位置上是几 ...

  7. 2020: [Usaco2010 Jan]Buying Feed, II

    2020: [Usaco2010 Jan]Buying Feed, II Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 220  Solved: 162[ ...

  8. 2019年IntelliJ IDEA 最新注册码,亲测可用(截止到2020年3月11日)

    2019年IntelliJ IDEA 最新注册码(截止到2020年3月11日) 操作步骤: 第一步:  修改 hosts 文件 ~~~ 在hosts文件中,添加以下映射关系: 0.0.0.0 acco ...

  9. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

随机推荐

  1. 2021.Jan.11.Mon

            人生中的机会不会有很多次,把每一次机会都当作最后一次机会,全力以赴地去做好,那么,你就不会永远在等待下一个机会. 看书心得---------By VincentAdamNemessis ...

  2. mysql过滤复制

  3. Windows Server 2012 R2远程桌面默认端口修改

    修改3389默认端口可使服务器安全性进一步提升,可以避免阻断大部分的恶意暴力密码爆破. 在开始--运行菜单里,输入regedit 或者: 远程登陆服务器选择系统桌面中的"Windows Po ...

  4. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  5. Centos6.9安装ACFS

    安装完oracle 11GR2的RAC后,使用asmca打开图形化界面后,发现Volumes和ASM Cluster File System两个选项卡不能用 原因是因为ACFS不支持CentOS 解决 ...

  6. Pulsar 社区周报|2021-01-11~2021-01-17

    Pulsar 周报由 StreamNative 翻译整理.原文内容来自 StreamNative 官网 Pulsar 周报模块. 本期编辑:Tango@StreamNative. 关于 Apache ...

  7. 敏捷史话(四):敏捷是人的天性 —— Arie van Bennekum

    敏捷是人的天性,是你与生俱来的东西.面对敏捷,Arie van Bennekum 下了这样一个结论. 但这并不意味着人们只能通过天赋获得敏捷,对于想要学习敏捷的人来说,敏捷绝不是仅仅靠学习僵化的框架. ...

  8. 集成 12 种协议、可于 USBC 端口的快充协议芯片IP2188

    1. 特性  支持 12 种 USB 端口快充协议  支持 USB TypeC PD2.0/PD3.0/PPS DFP 协议  支持多种充电协议(QC3.0/QC2.0,FCP,SCP, AFC,MT ...

  9. 消息队列之kafka

    消息队列之activeMQ 消息队列之RabbitMQ 1.kafka介绍 kafka是由scala语言开发的一个多分区,多副本的并且居于zookeeper协调的分布式的发布-订阅消息系统.具有高吞吐 ...

  10. linux设备文件

    一.前言 在调用了alloc_chrdev_region函数或register_chrdev_region函数之后可以在/proc/devices中看到该设备的主设备号,比如我注册的hello模块的主 ...