题意

给定一个长度为n的序列,然后从\(1\sim N\) 这 N 个数中选取两个数\(l,r\) , 如果\(l>r\),则交换\(l,r\)。把第\(l\) 个数到第\(r\)个数取出来构成一个数列。

A为该数列的xor和的期望

B为该数列的and和的期望

C为该数列的or和的期望

\(1\le N\le 1e5, N个自然数均不超过1e9\)

分析

  1. 位运算是不进位的,各位之间互不影响,因此可以把N个自然数都分成31位来单独计算
  2. 那些\([l,r]\) 宽度为1的,单个选取的概率其实为\(1\over {N^2}\),而其他为\(2\over {N^2}\) 。所以可以先处理那些宽度为1的区间

ABC的具体求法:

  1. xor是最不好想的那个,但是看书还是比较好理解的,利用两个变量\(c_1,c_2\) 来记录从\(r-1\)倒着往前数,奇数段和偶数段的长度和(因为异或遇到1就会反转答案,所以每一段是若干个0加一个1)
  2. and与or是比较好求的,last0和last1分别记录最接近的0和1的位置
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
typedef long long ll;
int a[N];
int n;
ll nn;
double B,C,A;
void calc(int x){
int last1 = 0,last0 = 0;
int c1 = 0,c2 = 0;
double solo = 0;//区间宽度为1的
for(int i=1;i<=n;i++){
int k = a[i] >> x & 1;//k表示当前这一位是0还是1
if(k){
B += 2.0 * (i - last0 - 1) * (1 << x) / nn ;
C += 2.0 * (i - 1) * (1 << x) / nn;
A += 2.0 * c1 * (1 << x) / nn;
c1++;
swap(c1,c2);
solo += (1 << x) * 1.0 / nn;
last1 = i;
}
else{
C += 2.0 * last1 * (1 << x) / nn;
c1++;
A += 2.0 * c2 * (1 << x) / nn;
last0 = i;
}
}
B += solo;
C += solo;
A += solo;
}
int main(){
scanf("%d",&n); nn = (ll) n * n;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=0;i<31;i++){
calc(i);
}
printf("%.3f %.3f %.3f\n",A,B,C);
return 0;
}

AcWing 216 Rainbow 的信号的更多相关文章

  1. Rainbow的信号

    Rainbow的信号 有一串长度为n的数列,现在从中等概率选出l,r,如果l大于r,则交换,有三个询问 l~r间的数与和的数学期望 l~r间的数或和的数学期望 l~r间的数异或和的数学期望 对于100 ...

  2. tyvj 2020 rainbow 的信号

    期望 被精度坑惨的我 注意:能开 long long 尽量开, 先除后乘, int 转 double 的时候 先转换在做运算 本题与位运算有关,位与位之间互不影响,所以我们可以分开考虑 #includ ...

  3. joyoi2020/lfyzoj114 Rainbow 的信号

    位与位间互不影响.一位一位计算. 长度为 \(1\) 的区间,选出概率为 \(1/n^2\).其余区间,选出概率为 \(2/n^2\).(这里的区间 \(l \leq r\)) 枚举右端点.记 \(l ...

  4. [BZOJ3054] Rainbow的信号(考虑位运算 + DP?)

    传送门 BZOJ没数据范围... 其实数据范围是这样的.. 前20%可以直接n^3暴力枚举每个区间 前40%可以考虑每一位,因为所有数每一位都是独立的,而和的期望=期望的和,那么可以枚举每一位,再枚举 ...

  5. Rainbow的信号 CH3801

    题目链接 题意:求n个整数任意取一个区间,一起进行xor,and,或or的操作,求xor的期望值,and的期望值,or的期望值. 思路:区间取的左端点为l,右端点为r,当r==l时,选的概率为1/n/ ...

  6. $CH$3801 $Rainbow$的信号 期望+位运算

    正解:位运算 解题报告: 传送门! 其实就是个位运算,,,只是顺便加了个期望的知识点$so$期望的帕并不难来着$QwQ$ 先把期望的皮扒了,就直接分类讨论下,不难发现,答案分为两个部分 $\left\ ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. Cadence 信号完整性(一)-- 仿真步骤3

    (2)单击“Identify DC Nets”,弹出“Identify DC Nets”窗口,如图2-6 所示: 图 2-6 Identify DC Nets 窗口 (3)在“Net”列表中选择网络如 ...

  9. CH3801Rainbow的信号

    Description Freda发明了传呼机之后,rainbow进一步改进了传呼机发送信息所使用的信号.由于现在是数字.信息时代,rainbow发明的信号用N个自然数表示.为了避免两个人的对话被大坏 ...

随机推荐

  1. loj #6179. Pyh 的求和 莫比乌斯反演

    题目描述 传送门 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^m \varphi(ij)(mod\ 998244353)\) \(T\) 组询问 \(1 \leq ...

  2. Github美化 添加徽章

    Github美化 添加徽章 0. 前言 1. 准备 2. 开始 a. 打开shields.io b.制作静态徽章 c.制作动态徽章 d. 结果 3.额外 0. 前言 之前看见很多大项目都有很多勋章,比 ...

  3. 【Java基础】基本语法-程序流程控制

    基本语法-程序流程控制 程序流程控制 流程控制语句是用来控制程序中各语句执行顺序的语句,可以把语句组合成能完成一定功能的小逻辑模块. 其流程控制方式采用结构化程序设计中规定的三种基本流程结构,即: 顺 ...

  4. Java类的加载过程-重点!!

    java类的加载过程有以下几步共同完成: 加载->连接->初始化.连接又分为验证.准备.解析 一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以 ...

  5. 你必须要懂的 Github 开源协议

    作为一个开源社区的活跃者,那些开源协议你都懂什么意思吗? 列两个: Apache License 可以: 商用.修改.分发 但是要声明作者来源和你的修改以及协议 MIT  License 只要声明版权 ...

  6. jenkins 构建历史 显示版本号

    0   jenkins 安装此插件: 此插件名为 " groovy postbuild " 1  效果图: 2   安装插件: 系统管理 --> 插件管理 --> 可选 ...

  7. Linux学习笔记 | 常见错误之无法获得锁

    问题: 当运行sudo apt-get install/update/其他命令时,会出现如下提示: E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资 ...

  8. Mac安装homebrew,postman,charles

    Homebrew是一款Mac OS平台下的软件包管理工具,拥有安装.卸载.更新.查看.搜索等很多实用的功能.简单的一条指令,就可以实现包管理,而不用你关心各种依赖和文件路径的情况,十分方便快捷. 1. ...

  9. 【原创】X86_64汇编、寄存器、内嵌汇编

    整理的X86_64/X86汇编.寄存器.C内嵌汇编笔记,主要用于查阅使用. 目录 一.汇编语言 二.指令 数据传输指令 栈操作指令 push pop 运算指令 位操作 比较操作指令 标志寄存器 流控制 ...

  10. 【Linux】rsync 守护进程的配置

    环境 centos7.2 1.首先查看是否安装rsync的相关包 rpm -qa | grep rsync rsync-3.1.2-4.el7.x86_64 如果没安装就yum install rsy ...