题目大意

鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个 的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果i时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为(i,j)的网格移向(i-1, j),(i+1, j),(i,j-1),(i,j+1)四个网格,机器人不能走出整个n*m 的网格。游戏开始时,你可以自由选定机器人的初始位置。现在你知道在一段时间内,鼹鼠出现的时间和地点,希望你编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。

输入格式

第一行为n(n<=1000), m(m<=10000),其中m表示在这一段时间内出现的鼹鼠的个数,接下来的m行每行有三个数据time,x,y表示有一只鼹鼠在游戏开始后time个时刻,在第x行第y个网格里出现了一只鼹鼠。Time按递增的顺序给出。注意同一时刻可能出现多只鼹鼠,但同一时刻同一地点只可能出现一只鼹鼠。

输出格式

仅包含一个正整数,表示被打死鼹鼠的最大数目

样例

 input

2 2
1 1 1
2 2 2

output
1
思路
  dp数组用来存最后打第i只鼹鼠的最优解
dp方程
  dp[i]=(dp[i],dp[j]+1);(前提是路程必须小于时间差,即能在规定时间内到达)
注意一下:题目说明一开始可以选任意一个位置作为起点,那么肯定选择一个一开始就会出现鼹鼠的地方,所以最后ans++
代码
 #include<bits/stdc++.h>
using namespace std;
const int maxn=+;
int x[maxn],y[maxn],t[maxn];
int dp[maxn];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&t[i],&x[i],&y[i]); }
for(int i=;i<=m;i++){
for(int j=;j<i;j++){
if(abs(x[i]-x[j])+abs(y[i]-y[j])<=abs(t[i]-t[j])){
dp[i]=max(dp[i],dp[j]+);
}
}
}
int ans=;
for(int i=;i<=m;i++){
ans=max(ans,dp[i]);
}
cout<<ans+; }

												

线性dp打鼹鼠的更多相关文章

  1. 线性dp 打鼹鼠

    鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n 的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气.你可以控 ...

  2. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  3. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  4. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  5. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  6. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  7. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  8. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  9. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

随机推荐

  1. java实现第六届蓝桥杯饮料换购

    饮料换购 饮料换购 乐羊羊饮料厂正在举办一次促销优惠活动.乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去,但不允许赊账. 请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么, ...

  2. java代码(4)---guava之Immutable(不可变)集合

    Immutable(不可变)集合   一,概述 guava是google的一个库,弥补了java语音的很多方面的不足,很多在java8中已有实现,暂时不展开,Collections是jdk提供的一个工 ...

  3. js事件的一些兼容写法

    事件兼容 事件对象的兼容 获取键码兼容 默认行为兼容 阻止事件冒泡兼容 事件监听兼容 ---- 封装 删除事件监听兼容 ---- 封装 事件委托->获取事件源兼容

  4. spring Cloud服务注册中心eureka

    Eureka是什么? 1.Eureka是SpringCloud Netflix的核心子模块. 2.Eureka包含Eureka Server和Eureka Client. 3.Server提供注册服务 ...

  5. Linux 虚拟机详细安装MySQL

    准备工作 下载MySQL 去官网下载MySQL:点我直达 百度云盘地址:链接: https://pan.baidu.com/s/1qBN4r6t8gvq-I4CFfQQ-EA 密码: hei3 检查L ...

  6. 技术周刊 · Lighthouse 测试报告生成

    登高远眺 天高地迥,觉宇宙之无穷 基础技术 Lighthouse 测试内幕 文章分享了网易云音乐前端性能监控平台使用 Lighthouse 的实践经验,介绍了 Lighthouse 的测试流程.内部模 ...

  7. 本地代码提交到远程仓库(git)

    [准备环境] 我没有在Linux搭建gitlab私有云服务器,用的是开源的 gitee托管平台 1.在gitee注册账号 2.本地下载git客户端 [步骤] 1  本地新建1个文件夹  进入文件夹后 ...

  8. ThinkPHP6 上传图片代码demo

    本文展示了ThinkPHP6 上传图片代码demo, 代码亲测可用. HTML部分代码 <tr> <th class="font-size-sm" style=& ...

  9. Spring IoC bean 的创建(上)

    前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 本篇文章主要介绍 Spring IoC 容 ...

  10. 重学ASP.NET Core 中的标记帮助程序

    标记帮助程序是什么 标记帮助程序使服务器端代码可以在 Razor 文件中参与创建和呈现 HTML 元素. 例如,内置的 ImageTagHelper 可以将版本号追加到图片名称.  每当图片发生变化时 ...