生成树计数问题用矩阵树定理来考虑。

矩阵树定理求得的为\(\sum\limits_T\prod\limits_{e\in T}v_e\),也就是所有生成树的边权积的和。

这题边是不带权的,应用矩阵树定理前,我们必须考虑给每条边赋上一个权值。

可以从多项式的角度来考虑解决生成树和给定树有\(k\)条边重复这一条件,将给定树的边边权赋为\(x\),其余边赋为\(1\),那么应用矩阵树定理后得到的多项式中第\(k\)次项\(x^k\)的系数即为恰好有\(k\)条边重复的方案数。

发现直接代入多项式来求行列式不太现实,那么可以先求得\(x\)在取\(1\)到\(n\)时行列式的值,然后就得到了\(n\)个方程,把原多项式的系数看作未知数,代入\(x\)得到的值来作为现在的系数,那么就可以通过高斯消元来求解了。

具体实现看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 210
#define mod 1000000007
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n;
ll a[maxn][maxn],b[maxn][maxn],e[maxn][maxn];
ll inv(ll x)
{
ll y=mod-2,ans=1;
while(y)
{
if(y&1) ans=ans*x%mod;
x=x*x%mod;
y>>=1;
}
return ans;
}
ll det()
{
ll ans=1;
for(int i=1;i<n;++i)
{
ll p=inv(b[i][i]);
for(int j=i+1;j<n;++j)
{
ll d=b[j][i]*p%mod;
for(int k=i;k<n;++k)
b[j][k]=(b[j][k]-b[i][k]*d%mod+mod)%mod;
}
ans=ans*b[i][i]%mod;
if(!b[i][i]) return 0;
}
return ans;
}
void gauss()
{
for(int i=1;i<=n;++i)
{
ll d=inv(a[i][i]);
for(int j=i;j<=n+1;++j) a[i][j]=a[i][j]*d%mod;
for(int j=i+1;j<=n;++j)
{
d=a[j][i];
for(int k=i;k<=n+1;++k)
a[j][k]=(a[j][k]-a[i][k]*d%mod+mod)%mod;
}
}
for(int i=n;i;--i)
for(int j=i-1;j;--j)
a[j][n+1]=(a[j][n+1]-a[j][i]*a[i][n+1]%mod+mod)%mod;
}
int main()
{
read(n);
for(int i=1;i<n;++i)
{
int x,y;
read(x),read(y);
e[x][y]=e[y][x]=1;
}
for(int i=1;i<=n;++i)
{
a[i][1]=1;
for(int j=2;j<=n;++j)
a[i][j]=a[i][j-1]*i%mod;
}
for(int k=1;k<=n;++k)
{
for(int i=1;i<=n;++i)
{
b[i][i]=0;
for(int j=1;j<=n;++j)
{
if(i==j) continue;
if(e[i][j]) b[i][j]=mod-k,b[i][i]+=k;
else b[i][j]=mod-1,b[i][i]++;
}
}
a[k][n+1]=det();
}
gauss();
for(int i=1;i<=n;++i) printf("%lld ",a[i][n+1]);
return 0;
}

题解 CF917D 【Stranger Trees】的更多相关文章

  1. CF917D Stranger Trees

    CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...

  2. CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)

    题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...

  3. CF917D Stranger Trees【矩阵树定理,高斯消元】

    题目链接:洛谷 题目大意:给定一个$n$个节点的树$T$,令$ans_k=\sum_{T'}[|T\cap T'|=k]$,即有$k$条边重合.输出$ans_0,ans_1,\ldots,ans_{n ...

  4. 题解-Codeforces917D Stranger Trees

    Problem \(\mathrm{Codeforces~917D}\) 题意概要:一棵 \(n\) 个节点的无向树.问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对 ...

  5. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

  6. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  7. 【CF917D】Stranger Trees

    题目 看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了 众所周知矩阵树求得是这个 \[\sum_{T}\prod_{e\in T}w_e\] 而我们现在的这个问题有些鬼畜了, ...

  8. codeforces 917D Stranger Trees

    题目链接 正解:矩阵树定理+拉格朗日插值. 一下午就搞了这一道题,看鬼畜英文题解看了好久.. 首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法 ...

  9. Codeforces917D. Stranger Trees

    $n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$. 对这种“在整体中求具有某些特性的 ...

随机推荐

  1. Python爬虫实战,完整的思路和步骤(附源码)

    前言 小的时候心中总有十万个为什么类似的问题,今天带大家爬取一个问答类的网站. 本堂课使用正则表达式对文本类的数据进行提取,正则表达式是数据提取的通用方法. 环境介绍: python 3.6 pych ...

  2. Jmeter系列(27)- 详解正则提取器

    如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 有了 JSON 提取器为啥还要用正则提 ...

  3. DNS区域传输和DNS字典爆破

    nslookup命令是已知域名的的解析记录下进行的查询.打个比方,已知sina.com这个域名有www.sina.com这条主机解析记录,就可以查询www.sina.com对应的ip以及其他相关信息. ...

  4. IntelliJ IDEA 2018.3.6 安装、激活 JRebel

    在 IntelliJ IDEA 2018.3.6 中安装## JRebel 1.代开 IDEA 开发工具,然后用快捷键 Ctrl+Alt+S 打开设置并搜索 jrebel 插件 2.安装 jrebel ...

  5. SpringBoot--使用redis实现分布式限流

    1.引入依赖 <!-- 默认就内嵌了Tomcat 容器,如需要更换容器也极其简单--> <dependency> <groupId>org.springframew ...

  6. Fiddler和JMeter测试需要主要的地方

    Fiddler里面设置请求头的时候ContentType和Content-Type这两种写法都可以: 这两种写法都可以. 但是在JMeter中必须要用Content-Type才行,如下图所示: (完)

  7. Pytorch迁移学习实现驾驶场景分类

    Pytorch迁移学习实现驾驶场景分类 源代码:https://github.com/Dalaska/scene_clf 1.安装 pytorch 直接用官网上的方法能装上但下载很慢.通过换源安装发现 ...

  8. 如何将less编译成css文件__less自动编译成css的方法总结

    作为css的预处理less,拥有着比css更快捷方便,扩展了css的变量.Mixin.函数等特性,使 CSS 更易维护和扩展.  如何你已经回使用css,那么less就很容易上手了.如果不使用less ...

  9. Python 最强 IDE 详细使用指南!

    PyCharm 是一种 Python IDE,可以帮助程序员节约时间,提高生产效率.那么具体如何使用呢?本文从 PyCharm 安装到插件.外部工具.专业版功能等进行了一一介绍,希望能够帮助到大家.作 ...

  10. GoLand 2020.1.3破解教程

    此教程适用于GoLand 2020.1.3其他版本理论上是一样的. GoLand建议从官网下载---->>>>>>下载 1 如果之前有激活留下的补丁文件,建议卸载删 ...