可迭代对象

关注公众号“轻松学编程”了解更多。

1、列表生成式

list = [result for x in range(m, n)]

g1 = (i for i in range(101))
print(type(g1))
print(g1)
print(g1.__next__())
输出:
<class 'generator'>
<generator object <genexpr> at 0x0000024E6AC08F10>
0
g1 = (i for i in range(11))
list1 = [i for i in g1]
print(list1)
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

2、可迭代对象

1.可以直接作用于for循环的对象统称为可迭代对象,我们称之为:Iterator
2.我们可以使用isintance()判断一个对象是否是Iterator对象
3.可以直接作用于for循环的数据类型有以下几种
a.集合数据类型:如list、tuple、dict、set和string
b.生成器(generator):就是一个能返回迭代器的函数,其实就是定义一个迭代算法,可以理解为一个特殊的迭代器
生成器:
通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,如果我们仅仅需要访问前面几个元素,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator。

g1 = (i for i in range(11))
print(g1)
for i in range(11):
print(next(g1),end='\t')
输出:
<generator object <genexpr> at 0x00000207F5C69678>
0 1 2 3 4 5 6 7 8 9 10

注意:使用Iterator判断的时候需要导入Iterable的包

from collections import  Iterable
print(isinstance([],Iterable))
print(isinstance((),Iterable))
print(isinstance("",Iterable))
print(isinstance({},Iterable))
print(isinstance({1,2,3},Iterable))
print({1,2,3})
print(isinstance(1,Iterable))
print(isinstance(1.2,Iterable))
g1 = (i for i in range(101))
print(isinstance(g1,Iterable))
输出:
True
True
True
True
True
{1, 2, 3}
False
False
True

3、迭代器

迭代器:不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,
直到最后出现StopIteration错误,表示无法返回下一个值
可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator对象)
可以使用isinstance()函数判断一个对象是否是Iterator对象。

注意:可迭代对象不一定是迭代器,但是迭代器一定是迭代对象。
可迭代对象与迭代器的关系:
可迭代对象包含迭代器

from collections import  Iterator
print(isinstance([],Iterator))
print(isinstance((),Iterator))
print(isinstance("",Iterator))
print(isinstance({},Iterator))
print(isinstance({1,2,3},Iterator))
print({1,2,3})
print(isinstance(1,Iterator))
print(isinstance(1.2,Iterator))
g1 = (i for i in range(101))
print(isinstance(g1,Iterator))
输出:
False
False
False
False
False
{1, 2, 3}
False
False
True

4、生成器

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

以下实例使用 yield 实现斐波那契数列:
生成器:使用了 yield 的函数被称为生成器(generator)

import sys

def fibonacci(n):  # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if counter > n:
return
yield a
a, b = b, a + b
counter += 1 if __name__ == '__main__':
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print(next(f), end=" ")
except StopIteration:
sys.exit()

输出:

0 1 1 2 3 5 8 13 21 34 55

5、 Iterator转换

可以通过Iter()函数将list、tuple、dict、string转换为Iterator对象。

from collections import  Iterator
list1 = [i for i in range(11)]
print(isinstance(list1,Iterator))
iter1 = iter(list1)
print(isinstance(iter1,Iterator))
for i in range(11):
print(next(iter1),end='\t')
输出:
False
True
0 1 2 3 4 5 6 7 8 9 10

后记

【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。

也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!

公众号

关注我,我们一起成长~~

python中可迭代对象、迭代器、生成器的更多相关文章

  1. 深入理解python中可迭代对象,迭代器,生成器

    英文原文出处:Iterables vs. Iterators vs. Generators 在python学习中,通常会陷入对以下几个相关概念之间的确切差异的困惑中: a container(容器) ...

  2. 可迭代对象&迭代器&生成器

    在python中,可迭代对象&迭代器&生成器的关系如下图: 即:生成器是一种特殊的迭代器,迭代器是一种特殊的可迭代对象. 可迭代对象 如上图,这里x是一个列表(可迭代对象),其实正如第 ...

  3. python 可迭代对象 迭代器 生成器总结

    可迭代对象 只要有魔法方法__iter__的就是可迭代对象  list和tuple和dict都是可迭代对象 迭代器 只要有魔法方法__iter__和__next__的就是可迭代对象 生成器 只要含有y ...

  4. 【Python】【容器 | 迭代对象 | 迭代器 | 生成器 | 生成器表达式 | 协程 | 期物 | 任务】

    Python 的 asyncio 类似于 C++ 的 Boost.Asio. 所谓「异步 IO」,就是你发起一个 IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知. Asyn ...

  5. Python--可迭代对象,迭代器,生成器

    记得在刚开始学Python的时候,看到可迭代对象(iterable).迭代器(iterator)和生成器(generator)这三个名词时,完全懵逼了,根本就不知道是啥意识.现在以自己的理解来详解下这 ...

  6. Python中的装饰器,迭代器,生成器

    1. 装饰器 装饰器他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象. 强调装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式 装饰器的目标:在遵循1和2的 ...

  7. python中的装饰器迭代器生成器

    装饰器: 定义:本质是函数(装饰其它函数) 为其它函数添加附加功能 原则: 1 不能修改被装饰函数源代码    2 不修改被装饰函数调用方式 实现装饰器知识储备: 1 函数即‘’变量‘’ 2 高阶函数 ...

  8. Python中可迭代对象是什么?

    Python中可迭代对象(Iterable)并不是指某种具体的数据类型,它是指存储了元素的一个容器对象,且容器中的元素可以通过__iter__( )方法或__getitem__( )方法访问. __i ...

  9. Python之可迭代对象、迭代器、生成器

    在使用Python的过程中,很容易混淆如下几个关联的概念: 1.容器(container) 2.可迭代对象(Iterable) 3.迭代器(Iterator) 4.生成器(generator) 5.生 ...

随机推荐

  1. Spring学习(九)--Spring的AOP

    1.配置ProxyFactoryBean Spring IOC容器中创建Spring AOP的方法. (1)配置ProxyFactoryBean的Advisor通知器 通知器实现定义了对目标对象进行增 ...

  2. 079 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 01 初识面向对象 04 实例化对象

    079 01 Android 零基础入门 02 Java面向对象 01 Java面向对象基础 01 初识面向对象 04 实例化对象 本文知识点:实例化对象 说明:因为时间紧张,本人写博客过程中只是对知 ...

  3. [Java 开源项目]一款无需写任何代码,即可一键生成前后端代码的工具

    作者:HelloGitHub-小鱼干 JeecgBoot 是一款基于代码生成器的低代码开发平台,零代码开发.JeecgBoot 采用开发模式:Online Coding 模式-> 代码生成器模式 ...

  4. Vue 网站首页加载优化

    Vue 网站首页加载优化 本篇主要讲解 Vue项目打包后 vendor.js 文件很大 如何对它进行优化 以及开启Vue的压缩 和 nginx gzip 压缩的使用, 其他就是对接口优化等  1. v ...

  5. ASP。NET MVC (NetCore 2.0)用于处理实体框架、DbContexts和对象的通用控制器和视图

    下载source - 1.5 MB 介绍 本文的源代码已更新到NetCore 2.0 ASP.净MVC项目. 当我们开始开发一个ASP.在Microsoft Visual Studio中,我们发现通过 ...

  6. ansible-playbook-roles基本使用

    1. ansible-角色-roles基本使用  1.1) 创建roles目录结构 1 [root@test-1 ansible]# mkdir -p /ansible/roles/{common,n ...

  7. python的PEP8代码规范

    一.缩进:每级缩进用4个空格.如果缩进不正确或缩进格式不统一,一般错误信息会明确告诉你,但有时也会出现invalid syntax报错.所谓缩进不正确,python的缩进是四个空格或一个TAB,如果缩 ...

  8. 题解:CF593D Happy Tree Party

    题解:CF593D Happy Tree Party Description Bogdan has a birthday today and mom gave him a tree consistin ...

  9. BASH提示符颜色、显示返回值,终端标题显示当前目录与正在执行的命令

    BASH的PS1变量控制提示符相关的东西,善用它可以让BASH用起来舒服很多 提示符颜色 提示符显示上一个命令的返回值(exit code),并根据是否0调整颜色 提示符生成的时间(这样就知道上一条命 ...

  10. swoole执行外部程序称为进程

    <?php $child = new \Swoole\Process(function(\Swoole\Process $process){ $process->exec('/usr/lo ...