[PKUWC2018]Minimax 题解
根据题意,若一个点有子节点,则给出权值;否则可以从子节点转移得来。
若没有子节点,则直接给出权值;
若只有一个子节点,则概率情况与该子节点完全相同;
若有两个子节点,则需要从两个子节点中进行转移。
如何转移?显然,若权值 $i$ 在左子树,要取到它,需要在 $p_i$ 的概率中左子树较大,在 $(1-p_i)$ 的概率中左子树较小,右子树同理。因为当权值 $i$ 在左子树时右子树取到它的概率为 $0$ ,因此可以直接将两个子树的转移式相加合并,没有影响。即:
设节点 $x$ 取到权值 $i$ 的概率为 $f_{x,i}$ ,节点数为 $n$ ,则有:
$$f_{x,i}=f_{lson(x),i}*(p_x*\sum_{j=1}^{i-1} f_{rson(x),j}+(1-p_x)*\sum_{j=i+1}^{n} f_{rson(x),j})+f_{rson(x),i}*(p_x*\sum_{j=1}^{i-1} f_{lson(x),j}+(1-p_x)*\sum_{j=i+1}^{n} f_{lson(x),j})$$
如何求值?通过观察可以发现,这个式子同时需要左儿子的值、右儿子的值以及其前缀、后缀和,可以想到用线段树合并进行求值。
如何实现?在线段树合并的同时维护前、后缀和,打上乘法标记即可。记得离散化。
本题需要用到分数取模:$\frac{a}{b}\bmod k=\frac{a}{b}*b^{k-1}\bmod k=a*b^{k-2}\bmod k$ 。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=3e5+100;
const int P=998244353;
int qpow(int x,int y)
{
int ans=1;
while(y)
{
if(y&1)
ans=1LL*ans*x%P;
x=1LL*x*x%P,y>>=1;
}
return ans;
}//快速幂
const int D=qpow(10000,P-2);
struct Seg
{
int lson,rson,sum,tag;
#define lson(i) t[i].lson
#define rson(i) t[i].rson
#define sum(i) t[i].sum
#define tag(i) t[i].tag//乘法标记
}t[N<<5];
int n,cnt,h,ans;
int v[N],r[N],a[N],cnts[N],anss[N],s[N][2];
int newp()
{
int p=++cnt;
tag(p)=1;
return p;
}//新建节点
void update(int p,int val)
{
sum(p)=1LL*sum(p)*val%P;
tag(p)=1LL*tag(p)*val%P;
}//更新
void pushdown(int p)
{
if(tag(p)>1)
update(lson(p),tag(p)),update(rson(p),tag(p)),tag(p)=1;
}//下传标记
void change(int &p,int l,int r,int k,int val)
{
if(!p)
p=newp();
if(l==r)
{
sum(p)=val;
return ;
}
pushdown(p);
int mid=l+r>>1;
if(k<=mid)
change(lson(p),l,mid,k,val);
else
change(rson(p),mid+1,r,k,val);
sum(p)=sum(lson(p))+sum(rson(p))%P;
}//修改
void ask(int p,int l,int r)
{
if(!p)
return ;
if(l==r)
{
anss[l]=sum(p);
return ;
}
pushdown(p);
int mid=l+r>>1;
ask(lson(p),l,mid),ask(rson(p),mid+1,r);
}//输出答案到对应数组
int merge(int x,int y,int l,int r,int xtag,int ytag,int val)
{
if(!x && !y)
return 0;
if(!x)
{
update(y,ytag);
return y;
}
if(!y)
{
update(x,xtag);
return x;
}
pushdown(x),pushdown(y);//下传标记
int mid=l+r>>1,lx=sum(lson(x)),ly=sum(lson(y)),rx=sum(rson(x)),ry=sum(rson(y));//先存值,否则之后会被改动
lson(x)=merge(lson(x),lson(y),l,mid,(xtag+1LL*ry*(1-val+P)%P)%P,(ytag+1LL*rx*(1-val+P)%P)%P,val);
rson(x)=merge(rson(x),rson(y),mid+1,r,(xtag+1LL*ly*val%P)%P,(ytag+1LL*lx*val%P)%P,val);
sum(x)=(sum(lson(x))+sum(rson(x)))%P;
return x;
}
void pre()
{
sort(a+1,a+h+1);
for(int i=1;i<=n;i++)
if(!cnts[i])
v[i]=lower_bound(a+1,a+h+1,v[i])-a;//权值离散化
else
v[i]=1LL*v[i]*D%P;//存概率,分数取模
}//预处理权值
void solve(int x)
{
if(!cnts[x])
{
change(r[x],1,h,v[x],1);
return ;
}//没有子节点,插入权值
if(cnts[x]==1)
{
solve(s[x][0]);
r[x]=r[s[x][0]];
return ;
}//只有一个子节点
solve(s[x][0]),solve(s[x][1]);
r[x]=merge(r[s[x][0]],r[s[x][1]],1,h,0,0,v[x]);//有两个子节点
}
int main()
{
scanf("%d",&n);
for(int i=1,x;i<=n;i++)
{
scanf("%d",&x);
if(x)
s[x][cnts[x]++]=i;
}
for(int i=1,x;i<=n;i++)
{
scanf("%d",&v[i]);
if(!cnts[i])
a[++h]=v[i];
}
pre(),solve(1),ask(r[1],1,h);
for(int i=1;i<=h;i++)
ans=(ans+1LL*i*a[i]%P*anss[i]%P*anss[i])%P;//计算答案
printf("%d",ans);
return 0;
}
[PKUWC2018]Minimax 题解的更多相关文章
- LOJ2537:[PKUWC2018]Minimax——题解
https://loj.ac/problem/2537 参考了本题在网上能找到的为数不多的题解. 以及我眼睛瞎没看到需要离散化,还有不开longlong见祖宗. ——————————————————— ...
- 【题解】PKUWC2018简要题解
[题解]PKUWC2018简要题解 Minimax 定义结点x的权值为: 1.若x没有子结点,那么它的权值会在输入里给出,保证这类点中每个结点的权值互不相同. 2.若x有子结点,那么它的权值有p的概率 ...
- BZOJ5461: [PKUWC2018]Minimax
BZOJ5461: [PKUWC2018]Minimax https://lydsy.com/JudgeOnline/problem.php?id=5461 分析: 写出\(dp\)式子:$ f[x] ...
- 题解-PKUWC2018 Minimax
Problem loj2537 Solution pkuwc2018最水的一题,要死要活调了一个多小时(1h59min) 我写这题不是因为它有多好,而是为了保持pkuwc2018的队形,与这题类似的有 ...
- [PKUWC2018] Minimax
Description 给定一棵 \(n\) 个节点的树,每个节点最多有两个子节点. 如果 \(x\) 是叶子,则给定 \(x\) 的权值:否则,它的权值有 \(p_x\) 的概率是它子节点中权值的较 ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并
传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...
- [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...
- 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...
随机推荐
- luogu P3761 [TJOI2017]城市 树的直径 bfs
LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...
- electron开发 - mac关闭和隐藏窗口
针对mac平台的app let willQuitApp = false; // 控制退出方式 mainWindow.on('close', (e) => { if (willQuitApp) { ...
- [转]为什么阿里巴巴要禁用Executors创建线程池?
作者:何甜甜在吗 链接:https://juejin.im/post/5dc41c165188257bad4d9e69 来源:掘金 看阿里巴巴开发手册并发编程这块有一条:线程池不允许使用Executo ...
- 打开IDEA后tomcat不能用,Cannot load project of unknown project type,无法加载类或者项目
这一问题在网络中有比较统一的解决方法,我这个也是按这个方法解决的. 问题出现的前提和原因: 一个运行正常项目,我关闭后第二天打开发现tomcat不能用了. 解决方法: 我查了一下,这是一个IDEA软件 ...
- 005_go语言中的for循环
代码演示 package main import "fmt" func main() { i := 1 for i <= 3 { fmt.Println(i) i = i + ...
- JDK11.0.7下载及安装详细教程(win10)
0.背景知识 JRE: Java Runtime Environment JDK:Java Development Kit JRE顾名思义是java运行时环境,包含了java虚拟机,java基础类库. ...
- JVM初探(三):类加载机制
一.概述 我们知道java代码会被编译为.class文件,这里class文件中的类信息最终还是需要jvm加载以后才能使用. 事实上,虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验,转 ...
- 一篇夯实一个知识点系列--python实现十大排序算法
写在前面 排序是查找是算法中最重要的两个概念,我们大多数情况下都在进行查找和排序.科学家们穷尽努力,想使得排序和查找能够更加快速.本篇文章用Python实现十大排序算法. 干货儿 排序算法从不同维度可 ...
- ReentrantLock与synchronized 源码解析
一.概念及执行原理 在 JDK 1.5 之前共享对象的协调机制只有 synchronized 和 volatile,在 JDK 1.5 中增加了新的机制 ReentrantLock,该机制的诞生并 ...
- CTF bossplayers 靶机
WAYs: robots.txt文件提供线索,命令执行漏洞获得反弹shell suid命令提升权限 1:netdiscover 发现主机地址192.168.1.109 2:使用namp进行端口扫描发现 ...