图 Graph
本文主要内容为:图的定义以及基本术语
- 图的定义
- 图
图G的组成:由 数据元素的集合E 和 数据间的关系集合E 组成,记作:G = <V, E>
顶点 (vertex):数据元素,V就是顶点的有穷非空集合
边 (edge): 顶点的序偶对,例如 (v1, v2),E就是边的集合
- 子图
定义:设 G=<V, E> 是一个图,E' 是 E 的子集,V' 是 V 的子集,且 E' 中的边权 仅与 V' 中的顶点相关联,
则 G' = <V', E'> 称为 图G 的子图
特殊的子图:空图,只有一个顶点,图G本身
- 无向图
定义:代表一条边的顶点的序偶是无序的(即该边无方向)
表示:无序的序偶对用圆括号表示,例如 (v1, v2) 和 (v2, v1) 是代表同一条边
- 有向图
定义:代表一条边的顶点的序偶是有序的(即该边有方向)
表示:有序的序偶对用尖括号表示,例如 <v1, v2> 和 <v2, v1> 是代表不同的边
弧:有向图的边的别称
弧尾 / 始点:边的起点,例如 <v1, v2> 中的 v1
弧头 / 终点:边的终点,例如 <v1, v2> 中的 v2
- 带权图
定义:图的每条边边或弧都附带权(weight)
权的作用:可以用于表示从一个顶点到另一个顶点的距离,费用,代价等等
- 稀疏图:边比较少的图
- 稠密图:边比较多的图
- 完全图:任何两个顶点间都有边相关联的图
- 图的基本术语
- 无向图顶点 v 的度:与该顶点相关的边的数目,记作 D(v)
- 有向图顶点 v 的入度:以顶点 v 为终点的弧的数目,记作 ID(v)
- 有向图顶点 v 的出度:以顶点 v 为起点的弧的数目, 记作 OD(v)
- 终端顶点 / 叶子:出度为 0 的顶点
- 路径:从一个顶点到另一个顶点,中间允许经过其他顶点,有向图的路径也是有向的
- 路径长度:路径上的 边 或 弧 * 权重 之和
- 回路 / 环:路径的起点和终点是同一个顶点的路径
- 图的根:从该顶点有路径可以到达图的其他所有顶点
- 连通图:无向图的任意两个顶点有路径
- 强连通图:有向图的任意两个顶点之间有来回路径
- 连通分量:无向图中的极大连通子图
- 强连通分量:有向图强连通的极大子图
- 网络:带权的连通图
- 图的相关计算
n:表示图中顶点的数目
e:表示图中边的数目
- 无向图 e 的取值范围:[0,n(n - 1) / 2]
- 有向图 e 的取值范围:[0, n(n - 1)]
图 Graph的更多相关文章
- 纸上谈兵: 图 (graph)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 图(graph)是一种比较松散的数据结构.它有一些节点(vertice),在某些节 ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 算法与数据结构基础 - 图(Graph)
图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- echart——关系图graph详解
VueEchart组件见上一篇 <template> <VueEcharts :options="options" auto-resize /> </ ...
- 某种带权有向无环图(graph)的所有路径的求法
// 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...
- 小白学Python(18)——pyecharts 关系图 Graph
Graph-基本示例 import json import os from pyecharts import options as opts from pyecharts.charts import ...
- 【JZOJ6357】小ω的图(graph)
description analysis 拆位从高位到低位贪心 对于当前位,如果把所有当前位为\(1\)的边塞入,\(1\)和\(n\)连通,则该位必须为\(1\) 这个是因为高位的\(1\)比所有低 ...
随机推荐
- [MIT6.006] 19. Daynamic Programming I: Fibonacci, Shortest Path 动态规划I:斐波那契,最短路径
这节课讲动态规划的内容,动态规划是一种通用且有效的算法设计思路,它的主要成分是"子问题"+"重用".它可以用于斐波那契和最短路径等问题的求解上. 一.斐波那契 ...
- Makefile 指定源文件目录 make
top=$(CURDIR) SRC_DIR=$(top)/src BUILD_DIR=$(SRC_DIR) src=$(wildcard $(SRC_DIR)/*.c) obj=$(patsubst ...
- rbd-mirror配置指南-单向备份
前言 RBD 的 mirroring 功能将在Jewel中实现的,这个Jewel版本已经发布了很久了,这个功能已经在这个发布的版本中实现了,本来之前写过一篇文章,但是有几个朋友根据文档配置后,发现还是 ...
- 利用HUtool读取Excel内容
// 1.获取上传文件输入流 InputStream inputStream = null; try{ inputStream = file.getInputStream(); }catch (Exc ...
- Django启动服务的流程
我晕,启动个服务浪费快一个小时的时间,记录下步骤吧. 1.D:\django\newworld>python manage.py runserver Performing system chec ...
- 解决Ubuntu配置nginx出现的问题
Ubuntu18.04配置nginx出现的各种错误 缺少pcre库 编译nginx 出现错误 安装pcre库,出现错误 手动编译安装pcre库 (1)下载并解压pcre库 wget https://f ...
- linux正则表达式符号集
\ 转义符,忽略其特殊意义: ^ 以--开始,^A 以A开始: $ 以--结束,A$ 以A结尾: ^$ 空行: * 0个或多个*前面的任意字符 . 匹配换行符\n之外的任意字符: .* 匹 ...
- Vue + ElementUI 后台管理模板推荐
最近学习和项目都用到了Vue和ElementUI,自己不是专业前端,搞这些UI上的东西还是有些难度,这里推荐两个Vue + ElementUI后台管理模板 vue-element-admin vue- ...
- Service Cloud零基础学习(二)Entitlement & MileStone
https://trailhead.salesforce.com/content/learn/modules/entitlements 很少会有人不买东西,买的多了也很少没有人没有经历过售后流程.我们 ...
- 仿射密码-fanfie--affine
仿射密码 仿射密码 是一种专情密码,一对一替换 ~~ 加密函数是 e(x) = ax + b (mod m) 其中a和m 互质,m是字母的数目. 解码函数是 d(x) = a^-1(x - b) (m ...