本文主要内容为:图的定义以及基本术语

  • 图的定义

图G的组成:由 数据元素的集合E 和 数据间的关系集合E 组成,记作:G = <V, E>

顶点 (vertex):数据元素,V就是顶点的有穷非空集合

边 (edge): 顶点的序偶对,例如 (v1, v2),E就是边的集合

    • 子图

定义:设 G=<V, E> 是一个图,E' 是 E 的子集,V' 是 V 的子集,且 E' 中的边权 仅与 V' 中的顶点相关联,

则 G' = <V', E'> 称为 图G 的子图

特殊的子图:空图,只有一个顶点,图G本身

    • 无向图

定义:代表一条边的顶点的序偶是无序的(即该边无方向)

表示:无序的序偶对用圆括号表示,例如 (v1, v2) 和 (v2, v1) 是代表同一条边

    • 有向图

定义:代表一条边的顶点的序偶是有序的(即该边有方向)

表示:有序的序偶对用尖括号表示,例如 <v1, v2> 和 <v2, v1> 是代表不同的边

弧:有向图的边的别称

弧尾 / 始点:边的起点,例如 <v1, v2> 中的 v1

弧头 / 终点:边的终点,例如 <v1, v2> 中的 v2

    • 带权图

定义:图的每条边边或弧都附带权(weight)

权的作用:可以用于表示从一个顶点到另一个顶点的距离,费用,代价等等

    • 稀疏图:边比较少的图
    • 稠密图:边比较多的图
    • 完全图:任何两个顶点间都有边相关联的图
  • 图的基本术语

    • 无向图顶点 v 的度:与该顶点相关的边的数目,记作 D(v)
    • 有向图顶点 v 的入度:以顶点 v 为终点的弧的数目,记作 ID(v)
    • 有向图顶点 v 的出度:以顶点 v 为起点的弧的数目, 记作 OD(v)
    • 终端顶点 / 叶子:出度为 0 的顶点
    • 路径:从一个顶点到另一个顶点,中间允许经过其他顶点,有向图的路径也是有向的
    • 路径长度:路径上的 边 或 弧  * 权重 之和
    • 回路 / 环:路径的起点和终点是同一个顶点的路径
    • 图的根:从该顶点有路径可以到达图的其他所有顶点
    • 连通图:无向图的任意两个顶点有路径
    • 强连通图:有向图的任意两个顶点之间有来回路径
    • 连通分量:无向图中的极大连通子图
    • 强连通分量:有向图强连通的极大子图
    • 网络:带权的连通图
  • 图的相关计算

n:表示图中顶点的数目

e:表示图中边的数目

    • 无向图 e 的取值范围:[0,n(n - 1) / 2]
    • 有向图 e 的取值范围:[0, n(n - 1)]

图 Graph的更多相关文章

  1. 纸上谈兵: 图 (graph)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 图(graph)是一种比较松散的数据结构.它有一些节点(vertice),在某些节 ...

  2. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  3. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  4. 算法与数据结构基础 - 图(Graph)

    图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...

  5. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  6. echart——关系图graph详解

    VueEchart组件见上一篇 <template> <VueEcharts :options="options" auto-resize /> </ ...

  7. 某种带权有向无环图(graph)的所有路径的求法

    // 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...

  8. 小白学Python(18)——pyecharts 关系图 Graph

    Graph-基本示例 import json import os from pyecharts import options as opts from pyecharts.charts import ...

  9. 【JZOJ6357】小ω的图(graph)

    description analysis 拆位从高位到低位贪心 对于当前位,如果把所有当前位为\(1\)的边塞入,\(1\)和\(n\)连通,则该位必须为\(1\) 这个是因为高位的\(1\)比所有低 ...

随机推荐

  1. JSON小结【json-lib】

    javabean:Address package com.baebae.model; public class Address { private String city; private Strin ...

  2. JAVA中常见的阻塞队列详解

    在之前的线程池的介绍中我们看到了很多阻塞队列,这篇文章我们主要来说说阻塞队列的事. 阻塞队列也就是 BlockingQueue ,这个类是一个接 口,同时继承了 Queue 接口,这两个接口都是在JD ...

  3. 守护进程详解以及start-stop-daemon命令

    1.概念:守护进程是在后台运行的不受终端控制的进程,通常守护进程在系统启动时自动运行,守护进程的名称通常以d结尾,比如sshd.xinetd.crond等. 2.创建守护进程的步骤:a.调用fork( ...

  4. Spring源码之Springboot中监听器介绍

    https://www.bilibili.com/video/BV12C4y1s7dR?p=11 监听器模式要素 事件 监听器 广播器 触发机制 Springboot中监听模式总结 在SpringAp ...

  5. logback怎么写?分类输出日志到不同的文件

    此appender有顺序,最好不要乱调顺序,输出日志如下: drwxr-xr-x 2 root root 4096 Dec 3 00:00 2019-12-02drwxr-xr-x 2 root ro ...

  6. [原题复现][2020i春秋抗疫赛] WEB blanklist(SQL堆叠注入、handler绕过)

    简介 今天参加i春秋新春抗疫赛 一道web没整出来 啊啊啊 好垃圾啊啊啊啊啊啊啊  晚上看群里赵师傅的buuoj平台太屌了分分钟上线 然后赵师傅还分享了思路用handler语句绕过select过滤.. ...

  7. ABBYY FineReader 15 PDF有哪些好用的功能?

    ABBYY FineReader 15(Windows系统)OCR文字识别软件中的PDF编辑器,是一个对用户相当友好的编辑器,不仅可以在其中查看,搜索PDF文档,还可以用以编辑文本,添加备注,添加与删 ...

  8. idea中快速将类中的属性转为Json字符串的插件

    当我们想要测试接口的时候,难免会根据一个类,一个一个的写json数据,当属性比较少时还行,但当属性多的时候就比较麻烦了, 为了解决这个问题,我们可以安装第三方的插件来快速生成json字符串. 步骤如下 ...

  9. 自己动手实现java数据结构(九) 跳表

    1. 跳表介绍 在之前关于数据结构的博客中已经介绍过两种最基础的数据结构:基于连续内存空间的向量(线性表)和基于链式节点结构的链表. 有序的向量可以通过二分查找以logn对数复杂度完成随机查找,但由于 ...

  10. selenium如何处理H5视频

    selenium处理H5视频主要使用的是javascript,javascript函数有内置的对象叫arguments,arguments包含了调用的参数组,[0]代表取第一个值. currentSr ...