Haar特征原理综述
Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征。它分为三类:边缘特征、线性特征、中心特征和对角线特征。如下所示:

Haar-like矩形特征拓展

 Lienhart R.等对Haar-like矩形特征库作了进一步扩展,加入了旋转45角的矩形特征。扩展后的特征大致分为4种类型:边缘特征、线特征环、中心环绕特征和对角线特征:

可是这些所谓的特征不就是一堆堆带条纹的矩形么,到底是干什么用的?我的理解是,将上面的任意一个矩形放到人脸区域上,然后,将白色区域的像素和减去黑色区域的像素和,得到的值我们暂且称之为人脸特征值,如果你把这个矩形放到一个非人脸区域,那么计算出的特征值应该和人脸特征值是不一样的,而且越不一样越好,所以这些方块的目的就是把人脸特征量化,以区分人脸和非人脸。

用黑白两种矩形框组合成特征模板,在特征模板内用 黑色矩形像素和 减去 白色矩形像素和来表示这个模版的特征值。例如:脸部的一些特征能由矩形模块差值特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述在特定方向(水平、垂直、对角)上有明显像素模块梯度变化的图像结构。

如上图A、B、D模块的图像Haar特征为:v=Sum白-Sum黑
C 模块的图像Haar特征为:v=Sum白(左)+Sum白(右)-2*Sum黑
这里要保证白色矩形模块中的像素与黑色矩形的模块的像素数相同,所以乘2

对于一幅图像来说,可以通过通过改变特征模板的大小和位置,可穷举出大量的特征来表示一幅图像。上图的特征模板称为“特征原型”;特征原型在图像子窗口中扩展(平移伸缩)得到的特征称为“矩形特征”;矩形特征的值称为“特征值”。例如在24*24大小的图像中可以以坐标(0,0)开始宽为20高为20矩形模版计算上图A特征,也可以以坐标(0,2)开始宽为20高为20矩形模版计算上图A特征,也可以以坐标(0,0)开始宽为22高为22矩形模版计算上图A特征,这样矩形特征值随着类别、大小和位置的变化,使得很小的一幅很小的图像含有非常多的矩形特征。矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。
总结来说,

特征 = 某个区域的像素点经过某种四则运算之后得到的结果。

这个结果可以是一个具体的值也可以是一个向量,矩阵,多维。实际上就是矩阵运算

使用特征可以识别一张图片里有没有人脸,人脸上五官的位置。

haar特征的计算(积分图法):

首先要解决一个问题,什么是积分图?

积分图就是只遍历一次图像就可以求出图像中所有区域像素和的快速算法,大大的提高了图像特征值计算的效率。

积分图主要的思想是将图像从起点开始到各个点所形成的矩形区域像素之和作为一个数组的元素保存在内存中,当要计算某个区域的像素和时可以直接索引数组的元素,不用重新计算这个区域的像素和,从而加快了计算(这有个相应的称呼,叫做动态规划算法)。积分图能够在多种尺度下,使用相同的时间(常数时间)来计算不同的特征,因此大大提高了检测速度。

我们来看看它是怎么做到的。

积分图是一种能够描述全局信息的矩阵表示方法。积分图的构造方式是位置(i,j)处的值ii(i,j)是原图像(i,j)左上角方向所有像素的和:

 

在特征值的计算过程中,黑色区域的权值为负值,白色区域的权值为正值。而且权值与矩形面积成反比(使两种矩形区域中像素数目一致);

积分图构建算法:

1)用s(i,j)表示行方向的累加和,初始化s(i,-1)=0;

2)用ii(i,j)表示一个积分图像,初始化ii(-1,i)=0;

3)逐行扫描图像,递归计算每个像素(i,j)行方向的累加和s(i,j)和积分图像ii(i,j)的值

s(i,j)=s(i,j-1)+f(i,j)

ii(i,j)=ii(i-1,j)+s(i,j)

4)扫描图像一遍,当到达图像右下角像素时,积分图像ii就构造好了。

积分图构造好之后,图像中任何矩阵区域的像素累加和都可以通过简单运算得到如图所示。

公式:Sum(D)=ii(x4,y4)−ii(x2,y2)−ii(x3,y3)+ii(x1,y1)

了解了原理及算法,接下来就是如何利用haar特征实现人脸检测了。

opencv里面提供了Haar特征分类器。Haar特征分类器说白了就是一个个的xml文件,不同的xml里面描述人体各个部位的特征值,比如人脸、眼睛等等。OpenCV4.2.0中提供了如下特征文件:

通过加载不同的特征文件,就能达到相应的检测效果。

OpenCV4.2.0中detectMultiScale函数参数说明:
detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize)
image:待检测图片,一般为灰度图(提高效率)
objects:被检测物体的矩形框向量组
scaleFactor:前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%
minNeighbors:构成检测目标的相邻矩形的最小个数(默认为3个)
flags:要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域,因此这些区域通常不会是人脸所在区域
minSize:得到的目标区域的最小范围
maxSize:得到的目标区域的最大范围

java实现代码如下:

package part;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class HaarFaceDetect { public static void main(String[] args)
{
// TODO Auto-generated method stub
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
System.out.println("\nRunning FaceDetector");
CascadeClassifier faceDetector = new CascadeClassifier();
faceDetector.load(
//这里是你opencv的安装地址
"D:\\opencv\\windows\\opencv4.2.0\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
Mat image = Imgcodecs.imread("./data/facedetect.jpg"); MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
for (Rect rect : faceDetections.toArray())
{
Imgproc.rectangle(image, new Point(rect.x, rect.y),
new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
} String filename = "./data/facedetect_2.jpg";
Imgcodecs.imwrite(filename, image);
} }

效果展示:

原图

效果图

可以看到效果还不错,但是还是有瑕疵的,并不是百分之百识别。

参考资料:https://blog.csdn.net/u012507022/article/details/54138299

https://blog.csdn.net/lanxueCC/article/details/52222369?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

https://blog.csdn.net/zylxadz/article/details/46602263

关于haar特征的理解及使用(java实现)的更多相关文章

  1. 对OpenCV中Haar特征CvHaarClassifierCascade等结构理解

    首先说一下这个级联分类器,OpenCV中级联分类器是根据VJ 04年的那篇论文(Robust Real-Time Face Detection)编写的,查看那篇论文,知道构建分类器的步骤如下: 1.根 ...

  2. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  3. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  4. 基于Haar特征Adaboost人脸检测级联分类

    基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...

  5. 【图像处理】计算Haar特征个数

    http://blog.csdn.net/xiaowei_cqu/article/details/8216109 Haar特征/矩形特征 Haar特征本身并不复杂,就是用图中黑色矩形所有像素值的和减去 ...

  6. 基于Haar特征的Adaboost级联人脸检测分类器

    基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征 ...

  7. [CV笔记]图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  8. OpenCV中基于Haar特征和级联分类器的人脸检测

    使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3 ...

  9. 照片美妆---基于Haar特征的Adaboost级联人脸检测分类器

    原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/3484223 ...

随机推荐

  1. python基础--14大内置模块(下)

    (9)正则表达式和re模块(重点模块) 在我们学习这个模块之前,我们先明确一个关系.模块和实际工作的关系. 1)模块和实际工作时间的关系 1.time模块和时间是什么关系?time模块和时间本身是没有 ...

  2. Python math 模块、cmath 模块

    Python math 模块.cmath 模块 Python 中数学运算常用的函数基本都在 math 模块.cmath 模块中.高佣联盟 www.cgewang.com Python math 模块提 ...

  3. PHP imagecolorclosestalpha - 取得与指定的颜色加透明度最接近的颜色的索引

    imagecolorclosestalpha — 取得与指定的颜色加透明度最接近的颜色的索引.高佣联盟 www.cgewang.com 语法 int imagecolorclosestalpha ( ...

  4. PHP highlight_file() 函数

    实例 对测试文件("test.php")进行 PHP 语法高亮显示: <html><body><?phphighlight_file("te ...

  5. LeetCode 87,远看是字符串其实是搜索,你能做出来吗?

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第54篇文章,我们一起来看LeetCode 87题,Scramble String(爬行字符串). 这题的官方难度 ...

  6. 修改 jar 包 或 war 包内容

    修改 jar 包 或 war 包内容 有一个 java web 项目,是 .jar 或 .war 文件,我想替换其中的部分样式(.css)或功能(.class). 步骤就是解压,替换,重新打包. 以 ...

  7. 【Python学习笔记】字符串拼接方法(5种)总结

    字符串的 5 种拼接方法: “+”号 “,”号 直接连接 格式化 多行字符串拼接 第一种:“+”号 print("Hello"+"Python") 打印结果: ...

  8. Phthon环境搭建

    一,官网去下载 https://www.python.org/downloads/ 二,安装 三,验证python 四.IPython IPython 是一个 python 的交互式 shell,比默 ...

  9. java BigInteger与BigDecimal

    一 BigInteger java中long型为最大整数类型,对于超过long型的数据如何去表示呢.在Java的世界中,超过long型 的整数已经不能被称为整数了,它们被封装成BigInteger对象 ...

  10. 2020-05-24:ZK分布式锁有几种实现方式?各自的优缺点是什么?

    福哥答案2020-05-24: Zk分布式锁有两种实现方式一种比较简单,应对并发量不是很大的情况.获得锁:创建一个临时节点,比如/lock,如果成功获得锁,如果失败没获得锁,返回false释放锁:删除 ...