目录

1、TF-IDF算法介绍

(1)TF是词频(Term Frequency)

(2) IDF是逆向文件频率(Inverse Document Frequency)

(3)TF-IDF实际上是:TF * IDF

2、TF-IDF应用

3、Python3实现TF-IDF算法

4、NLTK实现TF-IDF算法

5、Sklearn实现TF-IDF算法

1、TF-IDF算法介绍
       TF-IDF(term frequency–inverse document frequency,词频-逆向文件频率)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术。

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

TF-IDF的主要思想是:如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

(1)TF是词频(Term Frequency)
        词频(TF)表示词条(关键字)在文本中出现的频率。

这个数字通常会被归一化(一般是词频除以文章总词数), 以防止它偏向长的文件。

公式:   

即:

其中 ni,j 是该词在文件 dj 中出现的次数,分母则是文件 dj 中所有词汇出现的次数总和;

(2) IDF是逆向文件频率(Inverse Document Frequency)
        逆向文件频率 (IDF) :某一特定词语的IDF,可以由总文件数目除以包含该词语的文件的数目,再将得到的商取对数得到。

如果包含词条t的文档越少, IDF越大,则说明词条具有很好的类别区分能力。

公式:         

其中,|D| 是语料库中的文件总数。 |{j:ti∈dj}| 表示包含词语 ti 的文件数目(即 ni,j≠0 的文件数目)。如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用 1+|{j:ti∈dj}|

即:

(3)TF-IDF实际上是:TF * IDF
       某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。

公式:

注:  TF-IDF算法非常容易理解,并且很容易实现,但是其简单结构并没有考虑词语的语义信息,无法处理一词多义与一义多词的情况。

2、TF-IDF应用
     (1)搜索引擎;(2)关键词提取;(3)文本相似性;(4)文本摘要

3、Python3实现TF-IDF算法
# -*- coding: utf-8 -*-
from collections import defaultdict
import math
import operator

"""
函数说明:创建数据样本
Returns:
dataset - 实验样本切分的词条
classVec - 类别标签向量
"""
def loadDataSet():
dataset = [ ['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], # 切分的词条
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid'] ]
classVec = [0, 1, 0, 1, 0, 1] # 类别标签向量,1代表好,0代表不好
return dataset, classVec

"""
函数说明:特征选择TF-IDF算法
Parameters:
list_words:词列表
Returns:
dict_feature_select:特征选择词字典
"""
def feature_select(list_words):
#总词频统计
doc_frequency=defaultdict(int)
for word_list in list_words:
for i in word_list:
doc_frequency[i]+=1

#计算每个词的TF值
word_tf={} #存储没个词的tf值
for i in doc_frequency:
word_tf[i]=doc_frequency[i]/sum(doc_frequency.values())

#计算每个词的IDF值
doc_num=len(list_words)
word_idf={} #存储每个词的idf值
word_doc=defaultdict(int) #存储包含该词的文档数
for i in doc_frequency:
for j in list_words:
if i in j:
word_doc[i]+=1
for i in doc_frequency:
word_idf[i]=math.log(doc_num/(word_doc[i]+1))

#计算每个词的TF*IDF的值
word_tf_idf={}
for i in doc_frequency:
word_tf_idf[i]=word_tf[i]*word_idf[i]

# 对字典按值由大到小排序
dict_feature_select=sorted(word_tf_idf.items(),key=operator.itemgetter(1),reverse=True)
return dict_feature_select

if __name__=='__main__':
data_list,label_list=loadDataSet() #加载数据
features=feature_select(data_list) #所有词的TF-IDF值
print(features)
print(len(features))
运行结果:

4、NLTK实现TF-IDF算法
from nltk.text import TextCollection
from nltk.tokenize import word_tokenize

#首先,构建语料库corpus
sents=['this is sentence one','this is sentence two','this is sentence three']
sents=[word_tokenize(sent) for sent in sents] #对每个句子进行分词
print(sents) #输出分词后的结果
corpus=TextCollection(sents) #构建语料库
print(corpus) #输出语料库

#计算语料库中"one"的tf值
tf=corpus.tf('one',corpus) # 1/12
print(tf)

#计算语料库中"one"的idf值
idf=corpus.idf('one') #log(3/1)
print(idf)

#计算语料库中"one"的tf-idf值
tf_idf=corpus.tf_idf('one',corpus)
print(tf_idf)
运行结果:

5、Sklearn实现TF-IDF算法
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

# 将语料转化为词袋向量,根据词袋向量统计TF-IDF
vectorizer = CountVectorizer(max_features=5000)
tf_idf_transformer = TfidfTransformer()
tf_idf = tf_idf_transformer.fit_transform(vectorizer.fit_transform(x_train))
x_train_weight = tf_idf.toarray() # 训练集TF-IDF权重矩阵
tf_idf = tf_idf_transformer.transform(vectorizer.transform(x_test))

x_test_weight = tf_idf.toarray() # 测试集TF-IDF权重矩阵

TF-IDF算法介绍及实现的更多相关文章

  1. 55.TF/IDF算法

    主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说 ...

  2. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  3. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  4. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  5. tf–idf算法解释及其python代码

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

  8. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  9. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  10. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

随机推荐

  1. 【Excel】输入单引号

    首位输入:输入两个单引号 拼接输入:可以引入输入 举个例子:拼接一个SQL,values都是字符串,需要引号 =IF( OR(A2="",B2="",C2=&q ...

  2. github新建本地仓库并将代码提交到远程仓库

    方式一: 在github上新建好仓库:gitTest 使用命令git clone git@github.com:yourgithubID/gitTest.git,克隆到本地相应的位置 将要上传的工程代 ...

  3. docker--(MAC ubuntu centos)安装

    MacOS 安装 1.homebrew安装(需要mac密码) brew cask install docker 2.手动下载安装 如果需要手动下载,请点击以下链接下载 Stable 或 Edge 版本 ...

  4. B1043 输出PATest (20 分)

    一.技术总结: 对于哈希字符处理方式,一般是用一个数组存储字符出现的次数,然后再考虑后续. 同时,在输出时,比如这题要输出指定几个字符,我们可以首先统计下这几个字符一共出现的次数sum,然后输出一个就 ...

  5. Zabbix介绍及安装

    Zabbix简介 Zabbix是一款能够监控各种网络参数以及服务器健康性和完整性的软件,是一个企业级的分布式开源监控方案.Zabbix使用灵活的通知机制,允许用户为几乎任何事件配置基于邮件的告警.这样 ...

  6. php和jquery生成QR Code

    php生产QR Code 下载qrcode源码,地址:https://sourceforge.net/projects/phpqrcode/files/releases/ 1.解压后引入qrlib.p ...

  7. @Value不能给静态变量直接赋值问题

    1. 平时用的时候,直接在变量头上加上@Value就能到值(其中path.url是配置文件properties的.). @Value("${path.url}") private ...

  8. C# HTTP系列9 GET与POST示例

    系列目录     [已更新最新开发文章,点击查看详细] 学习本篇之前,对 HttpWebRequest 与 HttpWebResponse 不太熟悉的同学,请先学习<C# HTTP系列>. ...

  9. 【转】PyQt弹出式对话框的常用方法及标准按钮类型

    pyQt之弹出式对话框(QMessageBox)的常用方法及标准按钮类型 一.控件说明 QMessageBox是一种通用的弹出式对话框,用于显示消息,允许用户通过单击不同的标准按钮对消息进行反馈,且每 ...

  10. pyqt中pyrcc和pyuic的使用

    一.pyrcc的使用 1.1 作用 将资源文件转换成py文件,并在主程序引入 1.2 资源文件编写说明 新建resource.qrc,代码如下: <!DOCTYPE RCC><RCC ...