用pytorch1.0搭建简单的神经网络:进行多分类分析
用pytorch1.0搭建简单的神经网络:进行多分类分析
import torch
import torch.nn.functional as F # 包含激励函数
import matplotlib.pyplot as plt # 假数据
# make fake data
n_data = torch.ones(100, 2)
x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1)
x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1)
# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是合并数据)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x), Variable(y)
# 画散点图
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.show() # 建立神经网络
# 先定义所有的层属性(__init__()), 然后再一层层搭建(forward(x))层于层的关系链接
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 继承 __init__ 功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.out = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播输入值, 神经网络分析出输出值
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.out(x)
return x net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network
print(net) # net architecture == 显示神经网络结构
# Net(
# (hidden): Linear(in_features=2, out_features=10, bias=True)
# (out): Linear(in_features=10, out_features=2, bias=True)
# )
# 搭建完神经网络后,对 神经网路参数(net.parameters()) 进行优化
# (1.选择优化器 optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.02) # 传入 net 的所有参数, 学习率
# (2.选择优化的目标函数
loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted plt.ion() # something about plotting
# (3.开始训练网络
for t in range(100):
out = net(x) # input x and predict based on x # 喂给 net 训练数据 x, 输出预测值
loss = loss_func(out, y) # must be (1. nn output, 2. target), the target label is NOT one-hotted # 计算两者的误差 optimizer.zero_grad() # clear gradients for next train # 清空上一步的残余更新参数值
loss.backward() # backpropagation, compute gradients # 误差反向传播, 计算参数更新值
optimizer.step() # apply gradients # 将参数更新值施加到 net 的 parameters 上 if t % 2 == 0:
# plot and show learning process
plt.cla()
# 过了一道 softmax 的激励函数后的最大概率才是预测值
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) # 预测中有多少和真实值一样
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()
用pytorch1.0搭建简单的神经网络:进行多分类分析的更多相关文章
- 用pytorch1.0搭建简单的神经网络:进行回归分析
搭建简单的神经网络:进行回归分析 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as p ...
- 用pytorch1.0快速搭建简单的神经网络
用pytorch1.0搭建简单的神经网络 import torch import torch.nn.functional as F # 包含激励函数 # 建立神经网络 # 先定义所有的层属性(__in ...
- 神经网络一(用tensorflow搭建简单的神经网络并可视化)
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #创建一个input数据,-1到1之间300个数, ...
- python日记:用pytorch搭建一个简单的神经网络
最近在学习pytorch框架,给大家分享一个最最最最基本的用pytorch搭建神经网络并且训练的方法.本人是第一次写这种分享文章,希望对初学pytorch的朋友有所帮助! 一.任务 首先说下我们要搭建 ...
- Python实现一个简单三层神经网络的搭建并测试
python实现一个简单三层神经网络的搭建(有代码) 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层.本文所构建的神经网络隐藏层只有一层.一个神经网 ...
- pytorch1.0批训练神经网络
pytorch1.0批训练神经网络 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoa ...
- pytorch1.0神经网络保存、提取、加载
pytorch1.0网络保存.提取.加载 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot ...
- 使用pytorch快速搭建神经网络实现二分类任务(包含示例)
使用pytorch快速搭建神经网络实现二分类任务(包含示例) Introduce 上一篇学习笔记介绍了不使用pytorch包装好的神经网络框架实现logistic回归模型,并且根据autograd实现 ...
- 从环境搭建到回归神经网络案例,带你掌握Keras
摘要:Keras作为神经网络的高级包,能够快速搭建神经网络,它的兼容性非常广,兼容了TensorFlow和Theano. 本文分享自华为云社区<[Python人工智能] 十六.Keras环境搭建 ...
随机推荐
- Oracle误删除数据恢复。Oracle删除后恢复数据
发现误删除时需要及时处理,速度要快,姿势要帅.晚了就恢复不了额 1.查询时间 以确保恢复到某个时间点 select SQL_TEXT, LAST_ACTIVE_TIME from v$sqlarea ...
- 模板 - 数学 - 数论 - Min_25筛
终于知道发明者的正确的名字了,是Min_25,这个筛法速度为亚线性的\(O(\frac{n^{\frac{3}{4}}}{\log x})\),用于求解具有下面性质的积性函数的前缀和: 在 \(p\) ...
- Redis哨兵日常实践
一.日常操作 指定一个从做新主 有时候需要将当前主节点机器下线,并指定一个高一些性能的从节点接替 将其它从节点的slave-priority配置为0,然后在随意一台 Setinel 执行sentine ...
- Zrender:实现波浪纹效果
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- shell获取今天、明天、昨天、n天、周、月、年日期
1.获取今天日期 $ date -d now +%Y-%m-%d 或者$ date +%F 1 2 2.获取明天日期 $ date -d next-day +%Y-%m-%d$ date - ...
- tansition-group 使用方法
<transition-group name="breadcrumb"> <el-breadcrumb-item v-for="(item,index) ...
- hadoop 参数调优重点参数
yarn的参数调优,必调参数 28>.yarn.nodemanager.resource.memory-mb 默认为8192.每个节点可分配多少物理内存给YARN使用,考虑到节点上还 可能有其 ...
- Spring Boot Metrics监控之Prometheus&Grafana(转)
欢迎来到Spring Boot Actuator教程系列的第二部分.在第一部分中,你学习到了spring-boot-actuator模块做了什么,如何配置spring boot应用以及如何与各样的ac ...
- Maltego更新到4.2.6
Maltego更新到4.2.6 此次更新包含以下两处修改: (1)在服务管理中,允许用户修改OAuth回调协议的端口. (2)修复启动画面溢出错误.
- shell编程系列16--文本处理三剑客之awk模式匹配的两种方法
shell编程系列16--文本处理三剑客之awk模式匹配的两种方法 awk的工作模式 第一种模式匹配:RegExp 第二种模式匹配:关系运算匹配 用法格式对照表 语法格式 含义 RegExp 按正则表 ...