Tensorflow细节-P202-数据集的高层操作
本节是对上节的补充
import tempfile
import tensorflow as tf
# 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据。
train_files = tf.train.match_filenames_once("output.tfrecords")
test_files = tf.train.match_filenames_once("output_test.tfrecords")
def parser(record):
features = tf.parse_single_example(
record,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'pixels': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64)
}
)
decoded_images = tf.decode_raw(features['image_raw'], tf.uint8)
retyped_images = tf.cast(decoded_images, tf.float32)
images = tf.reshape(retyped_images, [784])
labels = tf.cast(features['label'], tf.int32)
# pixels = tf.cast(features['pixels'],tf.int32)
return images, labels
image_size = 299 # 定义神经网络输入层图片的大小。
batch_size = 100 # 定义组合数据batch的大小。
shuffle_buffer = 10000 # 定义随机打乱数据时buffer的大小。
# 定义读取训练数据的数据集。
dataset = tf.data.TFRecordDataset(train_files)
dataset = dataset.map(parser) # 哈哈哈,这里看懂了
# 对数据进行shuffle和batching操作。这里省略了对图像做随机调整的预处理步骤。
dataset = dataset.shuffle(shuffle_buffer).batch(batch_size)
# 重复NUM_EPOCHS个epoch。
NUM_EPOCHS = 10
dataset = dataset.repeat(NUM_EPOCHS)
# 定义数据集迭代器。
iterator = dataset.make_initializable_iterator()
image_batch, label_batch = iterator.get_next()
# 定义神经网络的结构以及优化过程。这里与7.3.4小节相同。
def inference(input_tensor, weights1, biases1, weights2, biases2):
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(image_batch, weights1, biases1, weights2, biases2)
# 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=label_batch)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
# 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion
# 优化损失函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
# 下面是测试用的
# 定义测试用的Dataset。
test_dataset = tf.data.TFRecordDataset(test_files)
test_dataset = test_dataset.map(parser)
test_dataset = test_dataset.batch(batch_size)
# 定义测试数据上的迭代器。
test_iterator = test_dataset.make_initializable_iterator()
test_image_batch, test_label_batch = test_iterator.get_next()
# 定义测试数据上的预测结果。
test_logit = inference(test_image_batch, weights1, biases1, weights2, biases2)
predictions = tf.argmax(test_logit, axis=-1, output_type=tf.int32)
# 声明会话并运行神经网络的优化过程。
with tf.Session() as sess:
# 初始化变量。
sess.run((tf.global_variables_initializer(),
tf.local_variables_initializer())) # tf.local_variables_initializer()返回一个初始化所有局部变量的操作(Op)
# 初始化训练数据的迭代器。
sess.run(iterator.initializer)
# 循环进行训练,直到数据集完成输入、抛出OutOfRangeError错误。
while True:
try:
sess.run(train_step)
except tf.errors.OutOfRangeError:
break
test_results = []
test_labels = []
# 初始化测试数据的迭代器。
sess.run(test_iterator.initializer)
# 获取预测结果。
while True:
try:
pred, label = sess.run([predictions, test_label_batch])
test_results.extend(pred)
test_labels.extend(label)
except tf.errors.OutOfRangeError:
break
# 计算准确率
correct = [float(y == y_) for (y, y_) in zip(test_results, test_labels)]
accuracy = sum(correct) / len(correct)
print("Test accuracy is:", accuracy)
运行结果是:
Tensorflow细节-P202-数据集的高层操作的更多相关文章
- TensorFlow数据集(二)——数据集的高层操作
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 一个使用数据集进行训练和测试的完整例子. #!/usr/bin/env python # -*- coding: ...
- 一个简单的TensorFlow可视化MNIST数据集识别程序
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...
- 吴裕雄 python 神经网络——TensorFlow 数据集高层操作
import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作
import tempfile import tensorflow as tf # 1. 列举输入文件. # 输入数据生成的训练和测试数据. train_files = tf.train.match_ ...
- TensorFlow 下 mnist 数据集的操作及可视化
from tensorflow.examples.tutorials.mnist import input_data 首先需要连网下载数据集: mnsit = input_data.read_data ...
- Tensorflow细节-P319-使用GPU基本的操作
如果什么都不加,直接运行装了GPU的Tensorflow,结果是这样子的 import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0], shape= ...
- [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...
- 学习笔记TF056:TensorFlow MNIST,数据集、分类、可视化
MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机 ...
随机推荐
- 【计算机网络基础】URI、URN和URL的区别
先引用一张关系图 灰色部分为URI URI强调的是给资源标记命名,URL强调的是给资源定位. URI是Uniform Resource Identifier,表示是一个资源: URL是Uniform ...
- 本地yum源 、阿里yum源、163yum源的配置安装
一.本地yum源 (我使用的7.3版本) 1..添加一个新的yum源配置文件dvd.repo(文件名字自定义) vi etc/yum.repos.d 添加新的内容: name=rhel_dvd ...
- 【C#】上机实验六
. 定义Car类,练习Lambda表达式拍序 ()Car类中包含两个字段:name和price: ()Car类中包含相应的属性.构造函数及ToString方法: ()在Main方法中定义Car数组,并 ...
- Linux环境python3.6.5
安装python3.6可能使用的依赖 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel r ...
- python爬虫-喜马拉雅_晚安妈妈睡前故事
这里先说下思路: 1.首先要获取当前书的音频信息 '''获取当前书的音频信息''' all_list = [] for url in self.book_url: r = requests.get(u ...
- Gym 102055B Balance of the Force
大意: $n$个骑士, 第$i$个骑士若加入光明阵营, 那么能力值$L_i$, 加入黑暗阵营, 能力值$D_i$. 给定$m$个限制$(u_i,v_i)$, 表示$u_i,v_i$不能在同一阵营. 求 ...
- 如何在Oracle触发器中使用查询语句
通常情况下,Oracle数据库禁止在行级触发器或行级触发器所调用的子程序中使用查询语句.但是,面对复杂的业务逻辑,不可避免的要使用查询语句. 当在行级触发器中使用查询语句时,Oracle数据库会抛出O ...
- TR-银行通信相关文档
DMEE配置指南: https://wenku.baidu.com/view/06790649767f5acfa1c7cd73.html F110 DMEE配置: https://wenku.baid ...
- springboot整合tkmybatis
tkmybatis是什么? tkmybatis是为了简化mybatis单表的增删改查而诞生的,极其方便的使用MyBatis单表的增删改查,在使用mybatis单表增删改查时,可以直接调用tkmybat ...
- javascript中的prototype和__proto__的理解
在工作中有时候会看到prototype和__proto__这两个属性,对这两个属性我一直比较蒙圈,但是我通过查阅相关资料,决定做一下总结加深自己的理解,写得不对的地方还请各位大神指出. 跟__prot ...