Tensorcore使用方法
用于深度学习的自动混合精度
深度神经网络训练传统上依赖IEEE单精度格式,但在混合精度的情况下,可以训练半精度,同时保持单精度网络的精度。这种同时使用单精度和半精度表示的技术称为混合精度技术。
混合精度训练的好处
通过使用Tensor Core加速数学密集型运算,如线性和卷积层。
与单精度相比,通过访问一半的字节可以加快内存受限的操作。
减少训练模型的内存需求,支持更大的模型或更小的批。
启用混合精度涉及两个步骤:在适当的情况下,将模型移植到使用半精度数据类型;并使用损失缩放来保持较小的梯度值。
TensorFlow、PyTorch和MXNet中的自动混合精度特性为深度学习研究人员和工程师提供了在NVIDIA Volta和Turing gpu上最多3倍的人工智能训练速度,而只需要添加几行代码。

使用自动混合精度的主要深度学习框架
- TensorFlow
在NVIDIA NGC容器注册表中提供的TensorFlow容器中提供了自动混合精度特性。要在容器内启用此功能,只需设置一个环境变量:
export TF_ENABLE_AUTO_MIXED_PRECISION=1
另外,环境变量可以在TensorFlow Python脚本中设置:
os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
另外还需要对优化器(Optimizer)作如下修改:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(optimizer) # 需要添加这句话,该例子是tf1.14.0版本,不同版本可能不一样
自动混合精度在TensorFlow内部应用这两个步骤,使用一个环境变量,并在必要时进行更细粒度的控制。
- PyTorch
自动混合精度特性在GitHub上的Apex repository中可用。要启用,请将这两行代码添加到您现有的训练脚本中:
model, optimizer = amp.initialize(model, optimizer)
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
- MXNet
NVIDIA正在为MXNet构建自动混合精度特性。你可以在GitHub上找到正在进行的工作。要启用该功能,请在现有的训练脚本中添加以下代码行:
amp.init()
amp.init_trainer(trainer)
with amp.scale_loss(loss, trainer) as scaled_loss:
autograd.backward(scaled_loss)
Tensorcore使用方法的更多相关文章
- javaSE27天复习总结
JAVA学习总结 2 第一天 2 1:计算机概述(了解) 2 (1)计算机 2 (2)计算机硬件 2 (3)计算机软件 2 (4)软件开发(理解) 2 (5) ...
- MegEngine TensorCore 卷积算子实现原理
作者:章晓 | 旷视 MegEngine 架构师 一.前言 2020 年 5 月 Nvidia 发布了新一代的 GPU 架构安培(Ampere).其中和深度学习关系最密切的莫过于性能强劲的第三代的 T ...
- 值得收藏 | 深度剖析 TensorCore 卷积算子实现原理
作者:章晓 | 旷视 MegEngine 架构师 一.前言 2020 年 5 月 Nvidia 发布了新一代的 GPU 架构安培(Ampere).其中和深度学习关系最密切的莫过于性能强劲的第三代的 T ...
- mapreduce多文件输出的两方法
mapreduce多文件输出的两方法 package duogemap; import java.io.IOException; import org.apache.hadoop.conf ...
- 【.net 深呼吸】细说CodeDom(6):方法参数
本文老周就给大伙伴们介绍一下方法参数代码的生成. 在开始之前,先补充一下上一篇烂文的内容.在上一篇文章中,老周检讨了 MemberAttributes 枚举的用法,老周此前误以为该枚举不能进行按位操作 ...
- IE6、7下html标签间存在空白符,导致渲染后占用多余空白位置的原因及解决方法
直接上图:原因:该div包含的内容是靠后台进行print操作,输出的.如果没有输出任何内容,浏览器会默认给该空白区域添加空白符.在IE6.7下,浏览器解析渲染时,会认为空白符也是占位置的,默认其具有字 ...
- 多线程爬坑之路-Thread和Runable源码解析之基本方法的运用实例
前面的文章:多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类) 多线程爬坑之路-Thread和Runable源码解析 前面 ...
- [C#] C# 基础回顾 - 匿名方法
C# 基础回顾 - 匿名方法 目录 简介 匿名方法的参数使用范围 委托示例 简介 在 C# 2.0 之前的版本中,我们创建委托的唯一形式 -- 命名方法. 而 C# 2.0 -- 引进了匿名方法,在 ...
- ArcGIS 10.0紧凑型切片读写方法
首先介绍一下ArcGIS10.0的缓存机制: 切片方案 切片方案包括缓存的比例级别.切片尺寸和切片原点.这些属性定义缓存边界的存在位置,在某些客户端中叠加缓存时匹配这些属性十分重要.图像格式和抗锯齿等 ...
随机推荐
- Eureka比Zookeeper好在哪里?
Eureka遵守AP,Zookeeper遵守CP RDBMS(oracle/mysql.sqlServer) ====> ACID, 关系型数据库遵循ACID原则: NoSQL(redis/mo ...
- 【计算机视觉】stitching_detail算法介绍
已经不负责图像拼接相关工作,有技术问题请自己解决,谢谢. 一.stitching_detail程序运行流程 1.命令行调用程序,输入源图像以及程序的参数 2.特征点检测,判断是使用surf还是orb, ...
- SourceTree安装
SourceTree安装教程 作为程序员,不可避免的要在github上查询代码,而在企业项目中,为了使得项目好管理需要使用项目管理客户端,所以接下来详细讲解一下基于git的sourceTree在win ...
- linux shell提示输入 输错字符解决方法
linux shell提示输入 输错字符解决方法ctrl+回车 删除单个字符ctrl+u删除光标前全部字符ctrl+k删除光标后全部字符
- Maven -------------- Eclipse 安装maven ,配置setting文件
1.设置maven路径 Window->Preferences->Maven->Installations-> 选择maven的路径,如果原来有低版本的建议删除 选择好后点击f ...
- JavaSE 笔试题: 自增变量
JavaSE 笔试题 自增变量 public class Test { public static void main(String[] args) { int i = 1; i = i++; int ...
- SpringBoot工程常见报错汇总
1.Springboot测试类运行报错 java.lang.IllegalStateException: Unable to find a @SpringBootConfiguration, you ...
- spring.profiles.active=@profiles.active@的含义
spring.profiles.active=@profiles.active@ ,其实是配合 maven profile进行选择不同配置文件进行启动. 当执行 mvn clean package - ...
- 最细的eclipse 安装maven踩过的坑
Eclipse安装maven插件踩过的坑 在线安装maven eclipse安装maven插件,在网上有各种各样的方法,博主使用过的也不止一种,但是留下的印象总是时好时不好,同样的方法也不确定那一次能 ...
- Java学习:面向对象的三大特征:封装性、继承性、多态性之继承性
面向对象的三大特征:封装性.继承性.多态性. 继承 继承是多态的前提 ,如果没有继承,就没有多态. 继承主要解决的问题就是:共性抽取. 继承关系当中的特点: 子类可以拥有父类的“内容” 子类还可以拥有 ...