题解-APIO2019路灯
problem
题意概要:一条直线上有 \(n+1\) 个点和 \(n\) 条道路,每条道路连通相邻两个点。在 \(q\) 个时刻内,每个时刻有如下两种操作之一:
- 切换某条道路的状态,即:若原来是连通的,则现在断开;若原来断开,则现在连通
- 给出 \(x,y\),询问在这次询问之前,有多少个时刻满足 \(a\rightarrow b\) 的道路连通(即这一段的道路都连通)
\(n,q\leq 3\times 10^5\),时限 \(5s\)
Solution
切了前两题让我还以为今年apio能ak的说,这题没切主要是因为没有想到可以将若干段区间的和变为所有右端点的坐标减去所有左端点的坐标,之前一直在想如何计算修改对答案的贡献来着
在这题里,连接即一段存在区间的左端点,减去当前时刻 \(t\),断开即一段区间的右端点,加上当前时刻 \(t\)。特别的,当一次询问时若他们之间连通,则需要再次强行加上当前时刻 \(t\)。
考虑切换道路 \((x,x+1)\),找到 \(x\) 往左走的最远端 \(l\),与 \(x+1\) 往右走的最远端 \(r\),则这次切换的影响为:左端点在 \([l,x]\) 内,且右端点在 \([x+1,r]\) 内的所有区间。
放到平面上去就是一个矩形,而询问就是询问这个平面上的一个点。有时间、\(x\)、\(y\)共三维,用 \(CDQ+BIT\) 可做到 \(O(n\log^2n)\)。
Code
至于找到每个位置向左向右的最远点,用 \(set\) 维护一下所有的极长道路区间即可
//loj-3146
#include <bits/stdc++.h>
using namespace std;
#define lb(x) (x&(-x))
template <typename _tp> inline void read(_tp&x) {
char ch=getchar();x=0;while(!isdigit(ch))ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
}
const int N = 301000;
int n;
namespace WK {
namespace BIT {
int d[N];
inline void add(int x, int v) {for(;x<=n;x+=lb(x)) d[x] += v;}
inline int qry(int x) {int r=0;for(;x;x^=lb(x))r+=d[x];return r;}
}
struct node {
int op, x, y, v;
} q[N*4], b[N*4];
int Ans[N], Qs, tot;
void qwq(int l, int r) {
if(l == r) return ;
int m = l + r >> 1;
qwq(l, m), qwq(m+1, r);
int t0 = l, t1 = m + 1;
int tt = l;
while(t0 <= m or t1 <= r) {
if((t0 <= m and t1 <= r and q[t0].x <= q[t1].x) or t1 > r) {
if(q[t0].op == 0)
BIT::add(q[t0].y, q[t0].v);
b[tt++] = q[t0++];
} else {
if(q[t1].op == 1)
Ans[q[t1].v] += BIT::qry(q[t1].y);
b[tt++] = q[t1++];
}
}
for(int i=l;i<=m;++i)
if(q[i].op == 0)
BIT::add(q[i].y, -q[i].v);
for(int i=l;i<=r;++i)
q[i] = b[i];
}
void work() {
qwq(1, tot);
for(int i=1;i<=Qs;++i)
printf("%d\n", Ans[i]);
}
inline void add_modify(int x0, int x1, int y0, int y1, int v) {
q[++tot] = (node) {0, x0, y0, +v};
q[++tot] = (node) {0, x0, y1+1, -v};
q[++tot] = (node) {0, x1+1, y0, -v};
q[++tot] = (node) {0, x1+1, y1+1, +v};
}
inline void add_query(int x, int y, int vl) {
q[++tot] = (node) {1, x, y, ++Qs};
Ans[Qs] = vl;
}
}
char str[N]; bool st[N];
int Q;
typedef pair<int,int> pii;
set <pii> c;
set <pii> :: iterator it, itr;
#define ins insert
#define ers erase
namespace BIT {
int d[N];
inline void add(int x, int v) {for(;x<=n;x+=lb(x)) d[x] += v;}
inline int qry(int l, int r) {
int res = 0;
for(;l;l^=lb(l)) res -= d[l];
for(;r;r^=lb(r)) res += d[r];
return res;
}
}
int main() {
read(n), read(Q);
scanf("%s", str+1);
str[++n] = '0';
for(int i=1;i<=n;++i) {
st[i] = str[i] == '1';
if(st[i]) BIT::add(i+1, +1);
}
for(int i=1,j;(j=i)<=n;i=j+1) {
while(j < n and st[j]) ++j;
c.ins(pii(i, j));
}
char opt[7];
int x, y;
for(int i=1;i<=Q;++i) {
scanf("%s", opt);
if(opt[0] == 't') {
read(x);
if(st[x]) {
itr = c.upper_bound(pii(x, n+1)), --itr;
int l = itr->first, r = itr->second;
WK::add_modify(l, x, x+1, r, +i);
c.ers(itr), c.ins(pii(l, x)), c.ins(pii(x+1, r));
BIT::add(x+1, -1);
st[x] = false;
} else {
it = itr = c.upper_bound(pii(x, n+1)), --it;
int l = it->first, r = itr->second;
WK::add_modify(l, x, x+1, r, -i);
c.ers(it), c.ers(itr), c.ins(pii(l, r));
BIT::add(x+1, +1);
st[x] = true;
}
} else {
read(x), read(y);
WK::add_query(x, y, BIT::qry(x, y) == y-x ? +i : 0);
}
}
WK::work();
return 0;
}
题解-APIO2019路灯的更多相关文章
- 【LOJ#3146】[APIO2019]路灯(树套树)
[LOJ#3146][APIO2019]路灯(树套树) 题面 LOJ 题解 考场上因为\(\text{bridge}\)某个\(\text{subtask}\)没有判\(n=1\)的情况导致我卡了\( ...
- P5445 [APIO2019]路灯(树套树)
P5445 [APIO2019]路灯 转化为平面上的坐标(x,y),set维护连续区间. 用树套树维护矩阵加法,单点查询. 注意维护矩阵差分的时候, $(x,y,v)$是对$(x,y)(n+1,n+1 ...
- LOJ3146 APIO2019路灯(cdq分治+树状数组)
每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...
- 题解-APIO2019桥梁
problem \(\mathrm {loj-3145}\) 题意概要:给定一张 \(n\) 点 \(m\) 边的无向图,边有边权,共 \(q\) 次操作,每次会将第 \(x\) 条边的权值改为 \( ...
- 题解-APIO2019奇怪装置
problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...
- P5445 [APIO2019]路灯
传送门· 对于询问 $(a,b)$ ,感觉一维很不好维护,考虑把询问看成平面上的一个点,坐标为 $(a,b)$ 每个坐标 $(x,y)$ 的值表示到当前 $x$ 和 $y$ 联通的时间和 考虑一个修改 ...
- APIO2019简要题解
Luogu P5444 [APIO2019]奇怪装置 看到这种题,我们肯定会想到\((x,y)\)一定有循环 我们要找到循环节的长度 推一下发现\(x\)的循环节长为\(\frac{AB}{B+1}\ ...
- 【APIO2019】路灯(ODT & (树套树 | CDQ分治))
Description 一条 \(n\) 条边,\(n+1\) 个点的链,边有黑有白.若结点 \(a\) 可以到达 \(b\),需要满足 \(a\to b\) 的路径上的边不能有黑的.现给出 \(0\ ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
随机推荐
- JVM 初始化阶段的重要意义分析
1.创建一个Mytest6类和Singleton类 public class MyTest6 { public static void main(String[] args) { Singleton ...
- python中list和dict
字典(Dictionary)是一种映射结构的数据类型,由无序的“键-值对”组成.字典的键必须是不可改变的类型,如:字符串,数字,tuple:值可以为任何python数据类型. 1.新建字典 1 2 3 ...
- Django HttpResponse与JsonResponse
本文链接:https://blog.csdn.net/mr_hui_/article/details/86498509 我们编写一些接口函数的时候,经常需要给调用者返回json格式的数据,那么如何返回 ...
- UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 0: invalid continuation byte
需求:python如何实现普通用户登录服务器后切换到root用户再执行命令 解决参考: 代码: def verification_ssh(host,username,password,port,roo ...
- Java 什么是静态内部类
#定义 Java语言允许在类中再定义类,这种在其它类内部定义的类就叫内部类. 有static关键字修饰的内部类. 比如:Pattern类中的Node类. public class Outer { pr ...
- Android中jsoup的混淆规则【转】
Android中jsoup的混淆规则版权声明:转载必须注明本文转自严振杰的博客:http://blog.yanzhenjie.com 说实话这篇文章的标题和内容我觉得很水,所以读者们要是也觉得这篇文章 ...
- flutter 路由动画
import 'package:flutter/material.dart'; import 'package:flutter_app/pages/FirstPage.dart'; void main ...
- Flutter之BLOC
flutter_bloc 是一个bloc第三方库,这个库很方便的让你集成bloc模式,这个库结合了RXDart,先了解一下bloc 的模式吧 1,widget 触发event 事件 2,bloc 接收 ...
- jsoup爬取某网站安全数据
jsoup爬取某网站安全数据 package com.vfsd.net; import java.io.IOException; import java.sql.SQLException; impor ...
- 【426】C 传递数组给函数
参考:C 传递数组给函数 参考:C语言二维数组作为函数参数传递 参考:二维数组作为函数参数传递剖析(C语言)(6.19更新第5种) 总结: 一维数组参数,可以是地址.arr[].arr[n] 二维数组 ...