参考的神仙An_Account的blog,膜一下。

其实就是一类反演问题可以用\(\mu\)函数的性质直接爆算出来。

然后其实性质就是一个代换:

\[\sum_{d|n}\mu(d)=[n=1]\]

问题一:求

\[\sum_{i=1}^n\sum_{j=1}^m[i \perp j]\]

……然而其实就是

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{d|\gcd(i,j)}\mu(d)\]

考虑\(d|\gcd(i,j)\)就是\(d|i,d|j\),于是可以枚举\(d\)。

\[\sum_{d=1}^{\min(n,m)}\mu(d)\cdot \lfloor\frac{n}{d}\rfloor\cdot \lfloor\frac{m}{d}\rfloor\]

这东西就可以直接分块。

问题二:求

\[\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\]

然而根据一个定理:

\[\gcd(i,j)=k\Longrightarrow\gcd(\frac{i}{k},\frac{j}{k})=1\]

于是就变成了:

\[\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[i \perp j]\]

问题三:求

\[\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k],k\in\rm{Prime}\]

我们考虑现在的柿子其实长这样:

\[\sum_{k\in \rm{Prime}}\sum_{d=1}^{\min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}\mu(d)\cdot \lfloor\frac{n}{kd}\rfloor\cdot \lfloor\frac{m}{kd}\rfloor\]

一个思想就是不断把重复求和的东西提到前面去。我们发现似乎带有\(kd\)的几项被重复求和,效率很低。同时因为\(O(kd)=O(n)\),所以改成先枚举\(kd\):

\[\begin{aligned}p=kd\\ \sum_{p=1}^{\min{(n,m)}}\end{aligned}\lfloor\frac{n}{p}\rfloor\cdot \lfloor\frac{m}{p}\rfloor\sum_{d|p}\mu (d)\]

然后显然后面的那个\(\sum\)是可以预处理的,于是就还是\(O(\sqrt n)\)的分块。

后面的择日应该会学一学= =?

[探究] $\mu$函数的性质应用的更多相关文章

  1. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  2. 简单了解split()函数的性质

    当分割的字符在字符串中间时,分割字符前面为一部分,后面为一部分.如: st='abccd' print(st.split('b')) 输出为:['a', 'ccd'] 当分隔符在字符串最前面或最后面时 ...

  3. 约数个数函数(d)的一个性质证明

    洛谷P3327 [SDOI2015]约数个数和 洛谷P4619 [SDOI2018]旧试题 要用到这个性质,而且网上几乎没有能看的证明,所以特别提出来整理一下. \[ d(AB) = \sum_{x| ...

  4. 第1期 考研中有关函数的一些基本性质《zobol考研微积分学习笔记》

    在入门考研微积分中,我们先复习一部分中学学的初等数学的内容.函数是非常有用的数学工具. 1.函数的性质理解: 首先考研数学中的所有函数都是初等函数.而函数的三个关键就是定义域.值域.对应关系f. 其中 ...

  5. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  6. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  7. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  8. 欧拉函数 &【POJ 2478】欧拉筛法

    通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...

  9. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

随机推荐

  1. golang--单元测试综合实例

    实例说明: (1)一个Monster结构体,字段Name,Age,Skill (2)Monster有一个Store方法,可以将一个Monster对象序列化后保存在文件中: (3)Monster有一个R ...

  2. 【shell脚本】不停地telnet一个ip或域名,并输出结果到文件中===telnetscript.sh

    编写shell脚本不停地telnet一个域名,并输出结果到文件中 [root@localhost ~]# cat telnetscript.sh #!/bin/bash #检查是否在root用户下执行 ...

  3. 一、Spring注解之@ComponentScan

    Spring注解之@ComponentScan [1]@ComponentScan注解是什么 @ComponentScan主要就是定义扫描的路径从中找出标识了需要装配的类自动装配到spring的bea ...

  4. SpringMVC_处理器方法的返回值

    一.返回ModelAndView    若处理器方法处理完后,需要跳转到其他资源,且又要在跳转的资源间传递数据,此时处理器方法返回ModelAndView比较好.当然,若要返回ModelAndView ...

  5. Windows Service 服务搭配FluentScheduler实现定时任务调度

    Windows Service 服务 创建Windows Service 项目 创建一个Windows Service项目,并将项目名称改为 TaskWindowService 在解决方案资源管理器内 ...

  6. 解决关于 npm build --prod ,出现 ERROR in budgets, maximum exceeded for initial. Budget 5 MB was exceeded by 750 kB的问题

    问题: 执行命令 :npm build --pord,出现以下错误: WARNING :. Ignoring. WARNING MB was exceeded by 3.73 MB. ERROR MB ...

  7. 安卓微信对接H5微信支付出现“商家参数有误,请联系商家解决”的问题处理

    最近遇到客户在对接我们微信支付的时候,一些商家反馈在用户支付的过程中会出现报错,出错的截图如下: 查看微信官方文档如下:https://pay.weixin.qq.com/wiki/doc/api/H ...

  8. 利用Python调用pastebin.com API自动创建paste

    在上一篇文章中,已经实现了模拟pastebin.com的账号登录,并且获取了api_dev_key,这一篇文章主要讲一下调用API创建paste 登录之后,进入API页面,发现网站已经提供了几个API ...

  9. jQuery基础的动画里面的回调函数

    <style> *{margin:0; padding:0;} #target{ border-radius:10px; background:#eee; } .fade{/*动画起始状态 ...

  10. linux设备驱动程序-设备树(1)-dtb转换成device_node

    linux设备驱动程序-设备树(1)-dtb转换成device_node 本设备树解析基于arm平台 从start_kernel开始 linux最底层的初始化部分在HEAD.s中,这是汇编代码,我们暂 ...