[探究] $\mu$函数的性质应用
参考的神仙An_Account的blog,膜一下。
其实就是一类反演问题可以用\(\mu\)函数的性质直接爆算出来。
然后其实性质就是一个代换:
\[\sum_{d|n}\mu(d)=[n=1]\]
问题一:求
\[\sum_{i=1}^n\sum_{j=1}^m[i \perp j]\]
……然而其实就是
\[\sum_{i=1}^n\sum_{j=1}^m\sum_{d|\gcd(i,j)}\mu(d)\]
考虑\(d|\gcd(i,j)\)就是\(d|i,d|j\),于是可以枚举\(d\)。
\[\sum_{d=1}^{\min(n,m)}\mu(d)\cdot \lfloor\frac{n}{d}\rfloor\cdot \lfloor\frac{m}{d}\rfloor\]
这东西就可以直接分块。
问题二:求
\[\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\]
然而根据一个定理:
\[\gcd(i,j)=k\Longrightarrow\gcd(\frac{i}{k},\frac{j}{k})=1\]
于是就变成了:
\[\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[i \perp j]\]
问题三:求
\[\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k],k\in\rm{Prime}\]
我们考虑现在的柿子其实长这样:
\[\sum_{k\in \rm{Prime}}\sum_{d=1}^{\min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}\mu(d)\cdot \lfloor\frac{n}{kd}\rfloor\cdot \lfloor\frac{m}{kd}\rfloor\]
一个思想就是不断把重复求和的东西提到前面去。我们发现似乎带有\(kd\)的几项被重复求和,效率很低。同时因为\(O(kd)=O(n)\),所以改成先枚举\(kd\):
\[\begin{aligned}p=kd\\ \sum_{p=1}^{\min{(n,m)}}\end{aligned}\lfloor\frac{n}{p}\rfloor\cdot \lfloor\frac{m}{p}\rfloor\sum_{d|p}\mu (d)\]
然后显然后面的那个\(\sum\)是可以预处理的,于是就还是\(O(\sqrt n)\)的分块。
后面的择日应该会学一学= =?
[探究] $\mu$函数的性质应用的更多相关文章
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
- 简单了解split()函数的性质
当分割的字符在字符串中间时,分割字符前面为一部分,后面为一部分.如: st='abccd' print(st.split('b')) 输出为:['a', 'ccd'] 当分隔符在字符串最前面或最后面时 ...
- 约数个数函数(d)的一个性质证明
洛谷P3327 [SDOI2015]约数个数和 洛谷P4619 [SDOI2018]旧试题 要用到这个性质,而且网上几乎没有能看的证明,所以特别提出来整理一下. \[ d(AB) = \sum_{x| ...
- 第1期 考研中有关函数的一些基本性质《zobol考研微积分学习笔记》
在入门考研微积分中,我们先复习一部分中学学的初等数学的内容.函数是非常有用的数学工具. 1.函数的性质理解: 首先考研数学中的所有函数都是初等函数.而函数的三个关键就是定义域.值域.对应关系f. 其中 ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- 【转】博弈—SG函数
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...
- 欧拉函数 &【POJ 2478】欧拉筛法
通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
随机推荐
- 简明了解apply()和call()
apply()和call()都是ES6语法的,并且都是函数的方法. function foo() { alert(this.name) } var obj = { name: '小明' } foo() ...
- mysql 实现经纬度排序查找功能
需求如下: 商品有多个门店,用户使用App时需要查找附近门店的商品,商品要进行去重分页. 思路: 1.确认mysql自带经纬度查询函数可以使用. 2.该需求需要利用分组排序,取每个商品最近门店的商品i ...
- 云原生生态周报 Vol. 15 | K8s 安全审计报告发布
业界要闻 CNCF 公布 Kubernetes 的安全审计报告 报告收集了社区对 Kubernetes.CoreDNS.Envoy.Prometheus 等项目的安全问题反馈,包含从一般弱点到关键漏洞 ...
- k8s笔记之chartmuseum搭建
一.下载安装包 #在master节点中执行,以下这条命令就是下载文件到当前目录而已,下载完成之后让我们将chartmuseum赋予权限,就是可执行了chmod chartmuseum,然后移动到/us ...
- 第三方web ide开发环境下vuejs开发HMR环境搭建-码农这样开发是快乐的!
vuejs是一个非常优秀的前端框架,利用该框架可以快速开发出任何web app,之所以vuejs开发非常高效快捷,其中最重要的一点就是利用webpakc提供的HMR(热模块替换)特性,可以边写vue组 ...
- csp201809-2 买菜
问题描述 小H和小W来到了一条街上,两人分开买菜,他们买菜的过程可以描述为,去店里买一些菜然后去旁边的一个广场把菜装上车,两人都要买n种菜,所以也都要装n次车.具体的,对于小H来说有n个不相交的时间段 ...
- 面向对象的六大原则之 单一职责原则——SRP
SRP = Single Responsibility Principle 定义:就一个类而言,应该只有一个能引起他变化的原因.通俗的说,即一个类只负责一项职责. 作用: 1.减少了类之间的耦 ...
- 微信小程序使用函数防抖解决重复点击消耗性能问题
wxml: <view bindtap="doubleTap" bindtouchstart="touchStart" bindtouchend=&quo ...
- 使用highcharts实现无其他信息纯趋势图实战实例
使用highcharts实现无其他信息纯趋势图实战实例 Highcharts去掉或者隐藏掉y轴的刻度线yAxis : { gridLineWidth: 0, labels:{ //enabled:fa ...
- JDK1.8 —— 接口定义增强
使用default和static定义接口方法 JDK1.8(jre8)以后,接口中不在仅仅只允许定义抽象方法,开始允许定义普通方法了:而普通方法需要用default声明. interface IMes ...