传送门

题意: 给你 n, m, k, 问你是否存在一个三角形, 满足三角形的面积等于 n * m / k;

    若存在, 输出YES, 且输出满足条件的三角形的三个坐标(答案有多种,则输出任意一种)

         且三角形的三个坐标,都满足, 0 <= xi <= n, 0 <= yi <= m;

    若不存在,输出NO;

解: 首先, 我们知道, 对于任意一个满足条件的三角形, 我们可以通过, 旋转, 平移。

   把他一个顶点移动到原点,另一个顶点移动到,y坐标轴或者x坐标轴。

   即将三角形的一条边移动到,坐标轴,且其中一个点在原点。

   然后, 我们知道了三角形的三个顶点的坐标,则面积公式为:

  S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2) = n * m / k;

  然后, 根据上面的性质, 你就可以得到

  x1 * y2 = 2 * n * m / k;

  然后, 对于 2 * n * m % k == 0 的情况, 一定有解, 判断一下 gcd(2 * n, k) ;

  若gcd = 1, 则 m 一定整除 k; 则, x1 = n, y2 = 2 * m / k;

  否则,x1 =  2 * n / gcd, y1 = m * gcd / k;

#include <bits/stdc++.h>
#define LL long long
using namespace std;
int main() {
LL n, m, k; scanf("%lld %lld %lld", &n, &m, &k);
if(2LL * n * m % k != ) puts("NO");
else {
puts("YES"); puts("0 0");
LL gcd = __gcd(2LL * n, k);
if(gcd == ) {
printf("%lld 0\n", n);
printf("0 %lld\n", 2LL * m / k);
}
else {
printf("%lld 0\n", 2LL * n / gcd);
printf("0 %lld\n", m * gcd / k);
}
}
return ;
}

D. Vasya and Triangle(思维, 三角形)的更多相关文章

  1. Codeforces Round #512 D - Vasya and Triangle

    D - Vasya and Triangle #include<bits/stdc++.h> using namespace std; #define LL long long LL gc ...

  2. CodeForces - 1058D D. Vasya and Triangle

    D. Vasya and Triangle time limit per test1 second memory limit per test256 megabytes inputstandard i ...

  3. Codeforces Round #512 (Div. 2) D. Vasya and Triangle(几何+思维)

    题目 题意: 给出 n,m,k ,让你在长为 n,宽为 m 的坐标系里构建一个三角形,使得面积= n*m/k.如果存在,输出“YES”,输出三角形三个顶点的坐标:  如果不存在,输出“NO”. 思路: ...

  4. codeforces 1030D Vasya and Triangle【思维+gcd】

    题目:戳这里 题意:选出三个点构成三角形,要求面积为n*m/k. 解题思路:因为三个点的坐标都是正整数,根据三角形面积公式(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2))/2=n* ...

  5. 611. Valid Triangle Number三角形计数

    [抄题]: 给定一个整数数组,在该数组中,寻找三个数,分别代表三角形三条边的长度,问,可以寻找到多少组这样的三个数来组成三角形? [暴力解法]: 全部都用for循环 时间分析: 空间分析: [思维问题 ...

  6. LeetCode Pascal's Triangle Pascal三角形

    题意:给一个数字,返回一个二维数组,包含一个三角形. 思路:n=0.1.2都是特例,特别处理.3行以上的的头尾都是1,其他都是依靠上一行的两个数.具体了解Pascal三角形原理. class Solu ...

  7. hdu 1451 Area in Triangle(计算几何 三角形)

    Given a triangle field and a rope of a certain length (Figure-1), you are required to use the rope t ...

  8. LeetCode 120. Triangle (三角形)

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  9. codeforces 1058D.Vasya and Triangle (gcd)

    <题目链接> <转载于  >>> > 题目大意: 给出n.m.k.求一个三角形使它的面积等于n*m/k  并且这个三角形的三个顶点所在的坐标为整数点,且顶点满 ...

随机推荐

  1. 可能这些是你想要的H5软键盘兼容方案

    前言 最近一段时间在做 H5 聊天项目,踩过其中一大坑:输入框获取焦点,软键盘弹起,要求输入框吸附(或顶)在输入法框上.需求很明确,看似很简单,其实不然.从实验过一些机型上看,发现主要存在以下问题: ...

  2. Unity UnityWebRequest实现与后端的交互

    一般我们与后端对接的时候会用到UnityWebRequest这里简单使用这个与后端进行交互这个是总类 using UnityEngine;using System.Collections;using ...

  3. java后台获取微信小程序openid

    一.jar包准备 1.在网盘下载 链接:https://pan.baidu.com/s/15HAAWOg_yn768g4s9IrcPg 提取码:hgj0 二.在pom文件中添加依赖 1.将外部的引入的 ...

  4. Elasticsearch 及 Kibana 安装篇

    简介 官网-安装介绍 这里记载了各个软件包的安装方法,Linux Mac Windows-- 本文记载的是在 CentOS 系统安装 Elasticsearch 7.0.0 版本的步骤. 安装 Jav ...

  5. HTML5的常用的标签

    HTML5对比HTML4新增了很多元素,也删除了部分元素(可以用css样式表方式替代)所以我只列出HTML5最常用的几个标签. head标签中: <meta http-equiv="X ...

  6. 74.js---移动端文章的瀑布流的实现。

    移动端文章的瀑布流的实现.   1.首先在前端html页面已经通过PHP代码循环完全数据.  2.然后在js先全部隐藏,通过判断滑动到底部,每次加载一部分数据,直到数据全部显示完全. js代码: // ...

  7. java线程的生命周期及五种基本状态

    一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上图中基本上囊括了Java中多线程各重要知识点.掌握了上图中的各知识点,Java中的多线程也就基本上掌 ...

  8. Android笔记(六十四) android中的动画——补间动画(tweened animation)

    补间动画就是只需要定义动画开始和结束的位置,动画中间的变化由系统去补齐. 补间动画由一下四种方式: 1.AplhaAnimation——透明度动画效果 2.ScaleAnimation ——缩放动画效 ...

  9. 自动网页截图并指定元素位置裁剪图片并保存到excel表格

    # coding=utf-8 import os import time from selenium import webdriver from selenium.webdriver.chrome.o ...

  10. typescript 箭头表达式

    箭头表达式:用来声明匿名函数,消除传统匿名函数的this指针问题 1.无参 var sum = () => {} 2.一个参数 var sum = arg2 => {} 3.多个参数 va ...