悬线法DP总结

问题模型

求满足某种条件(如01交替)的最大矩形(正方形)

思想

先预处理出\(ml[i][j],mr[i][j],mt[i][j]\),分别表示当前位置\((i,j)\)能向左扩展到的最左边的编号、能向右扩展到的最右边的编号、能向上扩展到的最大高度。

然后在做\(DP\)时,除第一行,每行根据上一行的状态更新当前状态,逐行扫一遍。复杂度\(O(n\times m)\)

[USACO5.3]巨大的牛棚Big Barn

洛谷题面

题意:求最大正方形

#include <cstdio>
#define MAXN 1010
#define MAX(A,B) ((A)>(B)?(A):(B))
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,t,ans;
bool mp[MAXN][MAXN];
int ml[MAXN][MAXN],mr[MAXN][MAXN],mt[MAXN][MAXN];
int main()
{
scanf("%d %d", &n, &t);
while(t--){
int x,y;
scanf("%d %d", &x, &y);
mp[x][y]=1;
}
for(register int i=1;i<=n;++i){
for(register int j=1;j<=n;++j){
ml[i][j]=mr[i][j]=j;
mt[i][j]=1;
}
}
for(register int i=1;i<=n;++i)
for(register int j=2;j<=n;++j)
if(mp[i][j-1]==0&&mp[i][j]==0)
ml[i][j]=ml[i][j-1]; // 预处理出能向左扩展到的最左边的编号
for(register int i=1;i<=n;++i)
for(register int j=n-1;j>=1;--j)
if(mp[i][j+1]==0&&mp[i][j]==0)
mr[i][j]=mr[i][j+1]; // 预处理出能向右扩展到的最右边的编号
for(register int i=1;i<=n;++i)
for(register int j=2;j<=n;++j){
if(i>1&&mp[i-1][j]==0&&mp[i][j]==0){ // 除第一行,每行根据上一行的状态更新当前状态
ml[i][j]=MAX(ml[i][j], ml[i-1][j]); // 注意取MAX,获得合法的ml
mr[i][j]=MIN(mr[i][j], mr[i-1][j]); // 注意取MIN,获得合法的mr
mt[i][j]=mt[i-1][j]+1;
}
int w=MIN(mr[i][j]-ml[i][j]+1, mt[i][j]); // 因为是正方形
ans=MAX(ans, w);
}
printf("%d", ans);
return 0;
}

[ZJOI2007]棋盘制作

P1169 洛谷题面

题意:求最大01交替正方形、长方形

#include <cstdio>
#define MAXN 2002
#define INF 0x3fffffff
#define MAX(A,B) ((A)>(B)?(A):(B))
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,m,ml[MAXN][MAXN],mr[MAXN][MAXN],mt[MAXN][MAXN];
int ans1, ans2;
bool mp[MAXN][MAXN];
int main()
{
scanf("%d %d", &n, &m);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
scanf("%d", &mp[i][j]),ml[i][j]=mr[i][j]=j,mt[i][j]=1;
for(int i=1;i<=n;++i)
for(int j=2;j<=m;++j)
if(mp[i][j]!=mp[i][j-1]) // 01扩展
ml[i][j]=MIN(ml[i][j-1], ml[i][j]); // 预处理出能向左扩展到的最左边的编号
for(int i=1;i<=n;++i)
for(int j=m-1;j>=1;--j)
if(mp[i][j]!=mp[i][j+1]) // 01扩展
mr[i][j]=MAX(mr[i][j+1], mr[i][j]); // 预处理出能向右扩展到的最右边的编号
for(int i=1;i<=n;++i)
for(int j=2;j<=m;++j){
if(i>1&&mp[i][j]!=mp[i-1][j]){ // 除第一行,每行根据上一行的状态更新当前状态
ml[i][j]=MAX(ml[i][j], ml[i-1][j]);
mr[i][j]=MIN(mr[i][j], mr[i-1][j]);
mt[i][j]=mt[i-1][j]+1;
}
int w = mr[i][j] - ml[i][j]+1;
int h = mt[i][j];
ans1 = MAX(MIN(w,h)*MIN(w,h), ans1); // 找出最大合法正方形
ans2 = MAX(w*h, ans2); // 找出最大合法矩形
}
printf("%d\n%d", ans1, ans2);
return 0;
}

P4147 玉蟾宫

P4147 玉蟾宫

题意:毒瘤输入,求最大正方形

#include <cstdio>
#define MAXN 1010
#define MAX(A,B) ((A)>(B)?(A):(B))
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,m,ans;
bool mp[MAXN][MAXN];
int ml[MAXN][MAXN],mr[MAXN][MAXN],mt[MAXN][MAXN];
int read(){
char in=getchar();
while(in!='F'&&in!='R') in=getchar();
if(in=='F') return 1;
return 0;
}
int main()
{
scanf("%d %d", &n, &m);
for(register int i=1;i<=n;++i){
for(register int j=1;j<=m;++j){
mp[i][j]=read();
ml[i][j]=mr[i][j]=j;
mt[i][j]=1;
}
}
for(register int i=1;i<=n;++i)
for(register int j=2;j<=m;++j)
if(mp[i][j-1]==1&&mp[i][j]==1)
ml[i][j]=ml[i][j-1];
for(register int i=1;i<=n;++i)
for(register int j=m-1;j>=1;--j)
if(mp[i][j+1]==1&&mp[i][j]==1)
mr[i][j]=mr[i][j+1];
for(register int i=1;i<=n;++i)
for(register int j=2;j<=m;++j){
if(i>1&&mp[i-1][j]==1&&mp[i][j]==1){
ml[i][j]=MAX(ml[i][j], ml[i-1][j]);
mr[i][j]=MIN(mr[i][j], mr[i-1][j]);
mt[i][j]=mt[i-1][j]+1;
}
int w=mr[i][j]-ml[i][j]+1;
ans=MAX(ans, w*mt[i][j]);
}
printf("%d", 3*ans);
return 0;
}

悬线法DP总结的更多相关文章

  1. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  3. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  4. P4147 玉蟾宫 二维DP 悬线法

    题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F ...

  5. hdu4328(经典dp用悬线法求最大子矩形)

    http://wenku.baidu.com/view/728cd5126edb6f1aff001fbb.html 关于悬线法,这里面有详解. 我当时只想到了记录最大长度,却没有想到如果连最左边和最右 ...

  6. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  7. 悬线法——有套路的DP

    例题 P1169 [ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8×88 \times ...

  8. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  9. DP(悬线法)+二维前缀和【p2706】巧克力

    Background 王7的生日到了,他的弟弟准备送他巧克力. Description 有一个被分成n*m格的巧克力盒,在(i,j)的位置上有a[i,j]块巧克力.就在送出它的前一天晚上,有老鼠夜袭巧 ...

随机推荐

  1. 环境配置--升级Python 3.6爬坑

    升级到3.6之后,发现ctrl alt t呼不出命令台,找了半天发现update manager也打不开,而且没有错误报告.....查阅了一番资料看到有人有类似的问题(https://askubunt ...

  2. Java 处理异常

    Java中 ,catch块和 finally块中都有可能发生异常,这时候就需要 用throw 抛出异常       类似于 C#里方法体中的 throw:

  3. ESP8266 智能家居简单实现

    本文转自CSDN,地址 https://blog.csdn.net/jsagacity/article/details/78531819 全文如下 : 前段时间,公司利用 ESP8266 这个WiFi ...

  4. (五) Docker 安装 Nginx

    参考并感谢 官方文档 https://hub.docker.com/_/nginx 下载nginx镜像(不带tag标签则表示下载latest版本) docker pull nginx 启动 nginx ...

  5. 【转载】 C#使用Math.Round方法对计算结果进行四舍五入操作

    在C#的数值运算中,有时候需要对计算结果进行四舍五入操作,此时就可使用内置方法Math.Round方法来实现四舍五入操作,Math.Round方法有多个重载函数,支持设置有效位数进行四舍五入,如果没有 ...

  6. elementui switch 开关,点击确认按钮后在进行开关

    <el-table-column label="上头条" align="center"> <template slot-scope=" ...

  7. 配置CTS+

    Please let me know if below SAP KBA could help you: 1739340 - ESR/ID Export Using CTS+ option is dis ...

  8. 关于vue-svg-icon的使用方式

    前言 工作中用到svg格式的图标,既然是svg,当然不想用古老的img方式引用,希望能凭借定义svg的fill属性,随意定义图标的颜色:同时不想将整段svg代码写入组建内,于是找到了使用vue-svg ...

  9. viewer与 iview Carousel(走马灯) 结合使用,图片无法显示

    问题原因:iview Carousel (走马灯)在加载是如果没有图片 它没有高度.之后给src赋值,图片无法显示,拖动一下浏览器宽或搞它就会显示. 走马灯解决这个问题方法:1在Carousel或其父 ...

  10. 隐藏Apache版本号及版本敏感信息

    在安装软件前,我们需要隐藏软件的版本号及版本其他信息,这样就大大提高了安全指数. 只隐藏版本号: 我们在主配置文件里:httpd.conf [root@bqh- ~]# curl -i bbs.bqh ...