【转载】 tensorflow的单层静态与动态RNN比较
原文地址:
https://www.jianshu.com/p/1b1ea45fab47
-----------------------------------------------------------------------------------
static_rnn和dynamic_rnn
1: static_rnn
x = tf.placeholder("float", [None, n_steps, n_input])
x1 = tf.unstack(x, n_steps, 1)
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
2: dynamic_rnn
x = tf.placeholder("float", [None, n_steps, n_input])
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs,_ = tf.nn.dynamic_rnn(lstm_cell ,x,dtype=tf.float32)
outputs = tf.transpose(outputs, [1, 0, 2])
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
(num_units: 是指一个Cell中神经元的个数,forget_bias:忘记门记住多少,1.0代表全部记住)
静态 rnn的意思就是按照样本时间序列个数(n_steps)展开,在图中创建(n_steps)个序列的cell
动态rnn的意思是只创建样本中的一个序列RNN,其他序列数据会通过循环进入该RNN运算。 通过静态static_rnn生成的RNN网络,生成过程所需的时间会更长,网络所占有的内存会更多,导出的模型会更大。static_rnn模型中会带有第个序列中间态的信息,利于调试。static_rnn在使用时必须与训练的样本序列个数相同。dynamic_rnn通过动态生成的RNN网络,所占用内存较少。dynamic_rnn模型中只会有最后的状态,在使用时还能支持不同的序列个数。
区别
1.tf.nn.dynamic_rnn与tf.contrib.rnn.static_rnn输入格式不同。
2.tf.nn.dynamic_rnn与tf.contrib.rnn.static_rnn输出格式不同。
3.tf.nn.dynamic_rnn与tf.contrib.rnn.static_rnn内部训练方式。
请仔细对比以下区别:
动态rnn
import tensorflow as tf
# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
n_input = 28 # MNIST data 输入 (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST 列别 (0-9 ,一共10类)
batch_size = 128
tf.reset_default_graph() # tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
outputs,_ = tf.nn.dynamic_rnn(lstm_cell,x,dtype=tf.float32)
outputs = tf.transpose(outputs, [1, 0, 2])
#取最后一条输出信息,(outputs[-1])
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001
training_iters = 100000 display_step = 10 # Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# 计算批次数据的准确率
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print (" Finished!") # 计算准确率 for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print ("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
静态RNN
import tensorflow as tf
# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
n_input = 28 # MNIST data 输入 (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST 列别 (0-9 ,一共10类)
batch_size = 128
tf.reset_default_graph() # tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
x1 = tf.unstack(x, n_steps, 1)
lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
#取最后一条输出信息,(outputs[-1])
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001
training_iters = 100000 display_step = 10 # Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# 计算批次数据的准确率
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print (" Finished!") # 计算准确率 for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print ("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
本代码源自:
凯文自学TensorFlow
# -*- coding: utf-8 -*- import tensorflow as tf
# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True)
n_input = 28 # MNIST data 输入 (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST 列别 (0-9 ,一共10类)
batch_size = 128
tf.reset_default_graph() # tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
#重置x以适合tf.contrib.rnn.static_rnn所要求的格式
#x1 = tf.unstack(x, n_steps, 1) #BasicLSTMCell(num_units: 是指一个Cell中神经元的个数,forget_bias:忘记门记住多少,1.0代表全部记住)
#静态 (tf.contrib.rnn.static_rnn)的意思就是按照样本时间序列个数(n_steps)展开,在图中创建(n_steps)个序列的cell;
#动态(tf.nn.dynamic_rnn)的意思是只创建样本中的一个序列RNN,其他序列数据会通过循环进入该RNN运算
"""
通过静态生成的RNN网络,生成过程所需的时间会更长,网络所占有的内存会更多,导出的模型会更大
。模型中会带有第个序列中间态的信息,利于调试。在使用时必须与训练的样本序列个数相同。通过动
态生成的RNN网络,所占用内存较少。模型中只会有最后的状态,在使用时还能支持不同的序列个数。
"""
#lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
#outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32)
"""
#2 LSTMCell,LSTM实现的一个高级版本(use_peepholes:默认False,True表示启用peephole连接)
cell_clip:是否在输出前对cell状态按照给定值进行截断处理
initializer:指定初始化函数
num_proj:通过projection进行模型压缩的输出维度
proj_clip:将num_proj按照给定的proj_clip截断
"""
#lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0)
#outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32) #3 gru类定义
#gru = tf.contrib.rnn.GRUCell(n_hidden)
#outputs = tf.contrib.rnn.static_rnn(gru, x1, dtype=tf.float32) #4 创建动态RNN,此时的输入是x,是动态的[None, n_steps, n_input]LIST
#具体定义参考https://blog.csdn.net/mzpmzk/article/details/80573338
gru = tf.contrib.rnn.GRUCell(n_hidden)
outputs,_ = tf.nn.dynamic_rnn(gru,x,dtype=tf.float32)
outputs = tf.transpose(outputs, [1, 0, 2])
#取最后一条输出信息,(outputs[-1])
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001
training_iters = 100000 display_step = 10 # Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# 计算批次数据的准确率
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print (" Finished!") # 计算准确率 for 128 mnist test images
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print ("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
-----------------------------------------------------------------------------------
【转载】 tensorflow的单层静态与动态RNN比较的更多相关文章
- RNN静态与动态
静态.多层RNN:import numpy as np import tensorflow as tf # 导入 MINST 数据集 from tensorflow.examples.tutorial ...
- Delphi DLL的创建、静态及动态调用
转载:http://blog.csdn.net/welcome000yy/article/details/7905463 结合这篇博客:http://www.cnblogs.com/xumenger/ ...
- [源码解析] TensorFlow 分布式环境(6) --- Master 动态逻辑
[源码解析] TensorFlow 分布式环境(6) --- Master 动态逻辑 目录 [源码解析] TensorFlow 分布式环境(6) --- Master 动态逻辑 1. GrpcSess ...
- [源码解析] TensorFlow 分布式环境(7) --- Worker 动态逻辑
[源码解析] TensorFlow 分布式环境(7) --- Worker 动态逻辑 目录 [源码解析] TensorFlow 分布式环境(7) --- Worker 动态逻辑 1. 概述 1.1 温 ...
- Android中BroadcastReceiver的两种注册方式(静态和动态)详解
今天我们一起来探讨下安卓中BroadcastReceiver组件以及详细分析下它的两种注册方式. BroadcastReceiver也就是"广播接收者"的意思,顾名思义,它就是用来 ...
- 生成lua的静态库.动态库.lua.exe和luac.exe
前些日子准备学习下关于lua coroutine更为强大的功能,然而发现根据lua 5.1.4版本来运行一段代码的话也会导致 "lua: attempt to yield across me ...
- 3D touch 静态、动态设置及进入APP的跳转方式
申明Quick Action有两种方式:静态和动态 静态是在info.plist文件中申明,动态则是在代码中注册,系统支持两者同时存在. -系统限制每个app最多显示4个快捷图标,包括静态和动态 静态 ...
- C/C++ 跨平台交叉编译、静态库/动态库编译、MinGW、Cygwin、CodeBlocks使用原理及链接参数选项
目录 . 引言 . 交叉编译 . Cygwin简介 . 静态库编译及使用 . 动态库编译及使用 . MinGW简介 . CodeBlocks简介 0. 引言 UNIX是一个注册商标,是要满足一大堆条件 ...
- RT-Thread创建静态、动态线程
RT-Thread 实时操作系统核心是一个高效的硬实时核心,它具备非常优异的实时性.稳定性.可剪裁性,当进行最小配置时,内核体积可以到 3k ROM 占用. 1k RAM 占用. RT-Thread ...
随机推荐
- 搭建helm私服ChartMuseum
介绍 ChartMuseum是一个用Go(Golang)编写的开源Helm Chart Repository服务器 ChartMuseum是一个用Go(Golang)编写的开源Helm Chart R ...
- http,socket,进程通信,网络通信(1)
众所周知,网络通信本质上就是进程间通信,进程间通信有以下常见的通信方式: 1,管道pipe:管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用,进程的亲缘关系通常指父子进 ...
- PCB板信号完整性分析的操作步骤及设置方法
AD16的主要功能是画电路原理图和根据电路原理图设计PCB板.为了使设计的电路.画完的电路原理图,从电路原理上不存在错误,从电路逻辑上不存在混乱,AD16专门开发了电路原理图的仿真程序.这样可以把设计 ...
- C 是什么样的语言?
学习交流可加 微信读者交流①群 (添加微信:coderAllen) 程序员技术QQ交流①群:736386324 --- ==C 是什么样的语言?== 这个问题不要急于寻找问题的答案,而是应该先去考虑当 ...
- springboot socketio
pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...
- ARTS-week7
Algorithm 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. Two Sum 编写一个 SQL 查询,满足条件:无论 ...
- easyui 自己写的一些小东西
1设置combobox,当我们只需要显示一个commbobox的时候,并且默认选择第一项 function Getcombobox(comboId, value, groupNo) { $('#' + ...
- Hive中的SQL执行计划--几乎所有的SQL都有
explain SQL 会解释SQL的执行过程
- Laravel —— tips 总结
一.Laravel 中 ajax 请求需要设置 header $.ajaxSetup({headers: {'X-CSRF-TOKEN': $('meta[name="csrf-token& ...
- member_template_function
#include <iostream> using namespace std; template<class T> class MyClass{ private: T val ...